

What is Docking?

"Predicting the best ways two molecules will interact."

- Obtain the 3D structures of the two molecules.
- (2) Locate the best binding site.
- Observation Determine the best binding modes.

5/13/08

Jsing AutoDock 4 with ADT

What is Docking?

"Predicting the best ways two molecules will interact."

- * We need to quantify or rank solutions;
- \ast We need a $\emph{Scoring Function}$ or force field.

"Predicting the best ways two molecules will interact."

- * (ways—plural) The experimentally observed structure may be amongst one of several predicted solutions.
- * We need a **Search Method**.

5/13/0

Key aspects of docking...

- * Scoring Functions
 - * What are they?
- * Search Methods
 - * How do they work?
 - Which search method should I use?
- * Dimensionality
 - * What is it?
 - * Why is it important?

Scoring Function in AutoDock 4: Motivation

- * To improve scoring function
 - improved hydrogen bonding
 - new desolvation energy term & internal desolvation energy
 - larger training set and new weights
- To permit protein sidechain, loop or domain flexibility (new DPF keyword, "flexres")
- treats protein's moving atoms as part of the non-translating, non-reorienting part of the torsion tree
 To simulate the unbound state of the ligand & protein

AutoDock 4 Scoring Function Terms

 $\Delta G_{binding} = \Delta G_{vdW} + \Delta G_{elec} + \Delta G_{hbond} + \Delta G_{desolv} + \Delta g_{tors}$

 $\Delta G_{wlW} = \Delta G_{wlW}$ 12-6 Lennard-Jones potential (with 0.5 Å smoothing)

 $\Delta G_{\rm ckc}$ with Solmajer & Mehler distance-dependent dielectric

12-10 H-bonding Potential with Goodford Directionality

 ΔG_{desolv} Charge-dependent variant of Stouten Pairwise Atomic Solvation Parameters

Number of rotatable bonds

http://autodock.scripps.edu/science/equations http://autodock.scripps.edu/science/autodock-4-desolvation-free-energy/ Using AutoDock.awith ADT 7

Pairwise terms in AutoDock 4

$$V = W_{\text{tob}} \sum_{i,j} \left(\frac{A_{ij}}{\sigma_{ij}^{12}} - \frac{B_{ij}}{\sigma_{ij}^{0}} \right) + W_{\text{about}} \sum_{i,j} E(t) \left(\frac{C_{ij}}{\sigma_{ij}^{12}} - \frac{D_{ij}}{\sigma_{ij}^{0}} \right) + W_{\text{effec}} \sum_{i,j} \frac{q_{i}q_{i}}{E(r_{ij})r_{ij}} + W_{\text{tot}} \sum_{i,j} (S_{i}V_{j} + S_{j}V_{i}) e^{(-r_{ij}^{2}/2\sigma^{2})}$$

- * Desolvation includes terms for all atom types
 - Favorable term for C, $A(aliphatic\ and\ aromatic\ carbons)$
 - Unfavorable term for O. N

 - Proportional to the absolute value of the charge on the atom
 Computes the intramolecular desolvation energy for moving atoms
- Calibrated with 188 complexes from LPDB, Kis from PDB-Bind

Standard error (in Kcal/mol):

- 2.62 (extended)
- 2.72 (compact)
- 2.52 (bound)
- 2.63 (AutoDock 3, bound)
- Improved H-bond directionality

Improved H-bond Directionality

Huey, Goodsell, Morris, and Olson (2004) Letts, Drug Des, & Disc. 2: 178-182

Why Use Grid Maps?

- Pre-computing the interactions on a grid is typically 100 times faster than traditional Molecular Mechanics methods
- $O(N^2)$ calculation becomes O(N)

AutoDock uses trilinear interpolation

- to compute the score of a candidate docked ligand conformation
- AutoDock needs one map for each atom type in the *ligand*(s) and *moving parts of receptor* (if there are any)
- Drawback: The receptor is conformationally rigid (although 'vdW softened')
- Limits the search space

Setting up the AutoGrid Box

- Macromolecule atoms in the rigid part
 - Center:
 - center of ligand;
 - center of macromolecule;
 - a picked atom; or
 - typed-in x-, y- and z-coordinates.

- Grid point spacing:

 default is 0.375Å (from 0.2Å to 1.0Å:).

 Number of grid points in each dimension:

 only give even numbers (from 2 × 2 × 2 to 126 × 126
- AutoGrid adds one point to each dimension.
- Grid Maps depend on the orientation of the macromolecule.
- Make sure all the flexible parts of the macromolecule are inside the grid

To make a molecule PDB file to show where the grid box is, use the script makebox's $_8$ + \$ makebox mol.gpf, box,pdb_yr

Relaxed Complex Method

Spectrum of Search: Breadth and Level-of-Detail

Breadth and Level-of-Detail Search Breadth Local Local Local Atom types

- * Molecular Mechanics (MM)
 Intermediate
 * Monte Carlo Simulated Annealing
 (MC SA)
- Monte Carlo Simulated Annealing (MC SA)
 Brownian Dynamics
- * Molecular Dynamics (MD)
- * Global
 - * Docking

- Bond stretching
- Bond-angle bending Rotational barrier potentials
- * Rotational barrier potential.
- Implicit solvationPolarizability
- What's rigid and what's flexible?

/13/08 Using AutoDock 4 wi

Two Kinds of Search

Systematic

- * Exhaustive
- * Deterministic
- Outcome is dependent on granularity of sampling
- Feasible only for lowdimensional problems
- * e.g. DOT (6D)

Stochastic

- * Random
- * Outcome varies
- * Must repeat the search to improve chances of
- success
 * Feasible for bigger problems
- * e.g. AutoDock

5/13/08

oDock 4 with ADT

Stochastic Search Methods

- * Simulated Annealing (SA)*
- * Evolutionary Algorithms (EA)
 - * Genetic Algorithm (GA)*
- * Others
 - * Tabu Search (TS)
 - * Particle Swarm Optimisation (PSO)
- * Hybrid Global-Local Search Methods
 - * Lamarckian GA (LGA)*

*Supported in AutoDock

5/13/01

AutoDock has a Variety of Search Methods

- Global search algorithms:
 - Simulated Annealing (Goodsell et al. 1990)
 - Distributed SA (Morris et al. 1996)
- Genetic Algorithm (Morris et al. 1998)
- * Local search algorithm:
 - Solis & Wets (Morris et al. 1998)
- * Hybrid global-local search algorithm:
 - * Lamarckian GA (Morris et al. 1998)

How Simulated Annealing Works...

- Ligand starts at a random (or user-specified) position/orientation/conformation ('state')
- Constant-temperature annealing cycle:

 * Ligand's state undergoes a random change.
 - Engains state under goes a fancion change.

 Compare the energy of the new position with that of the last position, if it is:

 | lower, the move is accepted;

 | higher, the move is accepted if e^(AEAT) > 0;
 - - otherwise the current move is 'rejected'.
- otherwise the current move is rejected.
 Cycle ends when we exceed either the number of accepted or rejected moves.

 Annealing temperature is reduced, 0.85 < g < 1 $T_1 = gT_1$,

 Rinse and repeat.

- Stops at the maximum number of cycles.

 $P(\Delta E) \ = \ e^{\left(-\frac{\Delta E}{k_BT}\right)}$ the Metr

How a Genetic Algorithm Works...

- Start with a random $\textbf{population}\ (5\text{o-}3\text{oo})$
- Genes correspond to state variables
 Perform genetic operations

- norm geneue operations

 Crossover

 Froint crossover, ABCD + abcd → Abcd + aBCD

 point crossover, ABCD + abcd → AbCD + aBcd

 miniorm crossover, ABCD + abcd → AbCD + aBcd

 miniorm crossover, ABCD + abcd → AbCd + aBcD

 arithmetic crossover, ABCD + abcd → [α ABCD + (1-α) abcd] +

 [(1-α) ABCD + α abcd] where: 0 < α < 1

Mutation

* add or subtract a random amount from randomly selected genes, A

- Compute the **fitness** of individuals (energy evaluation) **Proportional Selection** & **Elitism**If total energy evaluations or maximum generations reached, stop

Lamarek

- * Jean-Baptiste-Pierre-Antoinede Monet, Chevalier de Lamarck
- pioneer French biologist who is best known for his idea that acquired traits are inheritable, an idea known as Lamarckism, which is controverted by Darwinian theory.

How a Lamarckian GA works

- phenotypic adaptations of an individual to its environment can be mapped to its genotype & inherited by its offspring.

 Phenotype Atomic coordinates
- Genotype State variables (1) Local search (LS) modifies the phenotype.
- (2) Inverse map *phenotype* to the
- genotype Solis and Wets local search
- advantage that it does not require gradient information in order to proceed

 Rik Belew (UCSD) & William Hart (Sandia).

Important Search Parameters

ated Annealing

- Initial temperature (K)
- Temperature reduction factor (K-r cycle) * rtrf 0.95
- Termination criteria:
- * accepted moves accs 25000
- * rejected moves
- annealing cycles

 or cycles 50

Genetic Algorithm & Lamarckian GA * Population size

- ga_pop_size 300
- Crossover rate
- ga_crossover_rate 0.8
- Mutation rate ga_mutation_rate 0.02
- Solis & Wets local search (LGA only)
- sw_max_its 300
- Termination criteria:
- ga_num_evals 250000 # short ga_num_evals 2500000 # medium ga_num_evals 25000000 # long ga_num_generations 27000

Dimensionality of Molecular Docking

- * Degrees of Freedom (DOF)
- * Position / Translation (3)
 - * X,Y,Z
- * Orientation / Quaternion (3)
 - * qx, qy, qz, qw (normalized in 4D)
- * Rotatable Bonds / Torsions (n)
 - * τ_r , τ_2 , ... τ_n
- * Dimensionality, D = 3 + 3 + n

5/13/08

ing AutoDock 4 with ADT

Multidimensional Treasure Hunt...

Dimensions	Landscape	Divide into 2	Treasure	Chances?
I			-	1/2
2				1/4
3				1/8
5/13/08	U	sing AutoDock 4 with A	.DT	23

Sampling Hyperspace

- $\ast~$ Say we are hunting in $\ensuremath{\textit{D}}\xspace$ dimensional hyperspace...
- * We want to evaluate each of the D dimensions N times.
- * The number of "evals" needed, n, is: $n = N^D$
- $N = n^{1/D}$
- * For example, if $n = 10^6$ and...
 - * D=6, $N=(10^6)^{1/6}=10$ evaluations per dimension
 - * D=36, $N=(10^6)^{1/36}=1.5$ evaluations per dimension
- * Clearly, the more dimensions, the tougher it gets.

5/13/08

Next, AutoDock...

* Now for some specifics about AutoDock...

* More information can be found in the User Guide!

AutoDock/ADT

AutoDock & AutoGrid ADT

2000

Number crunching Visualizing, set-up

Command-line. awk, shell & Python scripts.

Text editors

Graphical User Interface. PMV ∴ Python GUI-less, self-logging &

rescriptable

C & C++, compiled Python, interpreted

Community (1991 - mid 2005) * AutoDock licenses Papers citing AutoDock (source: Science Citation Index Expanded)

Practical Considerations

- What problem does AutoDock solve?
 - Flexible ligands (4.0 flexible protein).
- What range of problems is feasible?

 - Depends on the search method:

 LGA>GA>> SA>> LS

 SA: can output trajectories, D < about 8 torsions.
 - * LGA: D < about 8-32 torsions.
- * When is AutoDock not suitable?
 - No 3D-structures are available;
 - Modelled structure of poor quality;
 - * Too many (32 torsions, 2048 atoms, 22 atom types);

 * Target protein too flexible.

Using AutoDock: Step-by-Step

- * Set up ligand PDBQT—using ADT's "Ligand" menu
- OPTIONAL: Set up flexible receptor PDBQT—using ADT's "Flexible Residues" menu
- Set up macromolecule & grid maps—using ADT's "Grid"
- $\label{pre-compute} Pre-compute AutoGrid maps for all atom types in your set of ligands—using "autogrid4"$
- Perform dockings of ligand to target—using "autodock4", and in parallel if possible.
- Visualize AutoDock results—using ADT's "Analyze" menu
- Cluster dockings—using "analysis" DPF command in "autodock4" or ADT's "Analyze" menu for parallel docking results.

AutoDock 4 File Formats

Prepare the Following Input Files

- Ligand PDBQT file
- Rigid Macromolecule PDBQT file
- Flexible Macromolecule PDBQT file ("Flexres")
- AutoGrid Parameter File (GPF)
 - GPF depends on atom types in:

 Ligand PDBQT file

 Optional flexible residue PDBQT f
- * AutoDock Parameter File (DPF)

Run AutoGrid 4

Macromolecule PDBQT + GPF → Grid Maps, GLG

Grid Maps + Ligand PDBQT + [Flexres PDBQT +] DPF → DLG (dockings & clustering)

Run ADT to Analyze DLG

Things you need to do before using AutoDock 4

Ligand:

- Add all hydrogens, compute Gasteiger charges, and merge non-polar H, also assign AutoDock 4 atom types
- Ensure total charge corresponds to tautomeric state
- Choose torsion tree root & rotatable bonds

Macromolecule:

- Add all hydrogens, compute Gasteiger charges, and merge non-polar H; also assign AutoDock 4 atom types
- Assign Stouten atomic solvation parameters
- Optionally, create a flexible residues PDBQT in addition to the rigid PDBQT file
- Compute AutoGrid maps

Preparing Ligands and Receptors

- * AutoDock uses 'United Atom' model
 - * Reduces number of atoms, speeds up docking
- * Need to:
 - * Add polar Hs. Remove non-polar Hs.
 - * Both Ligand & Macromolecule
 - * Replace missing atoms (disorder).
 - * Fix hydrogens at chain breaks.
- * Need to consider pH:
- * Acidic & Basic residues, Histidines.
- * http://molprobity.biochem.duke.edu
- * Other molecules in receptor:
 - * Waters; Cofactors; Metal ions.

* Molecular Modelling elsewhere.

2.4

Atom Types in AutoDock 4

- * One-letter or two-letter atom type codes
- * More atom types than AD3:
 - * 22
- * Same atom types in both ligand and receptor
- * http://autodock.scripps.edu/wiki/NewFeatures
- * http://autodock.scripps.edu/faqs-help/faq/ how-do-i-add-new-atom-types-to-autodock-4
- * http://autodock.scripps.edu/faqs-help/faq/ where-do-i-set-the-autodock-4-force-field-parameters

5/13/08

Using AutoDock 4 with AD

35

Partial Atomic Charges are required for both Ligand and Receptor

- * Partial Atomic Charges:
 - $\ast\,$ Peptides & Proteins; DNA & RNA
 - * Gasteiger (PEOE) AD4 Force Field
 - Organic compounds; Cofactors
 - * Gasteiger (PEOE) AD4 Force Field,
 - * MOPAC (MNDO, AMI, PM3);
 - * Gaussian (6-31G*).
- * Integer total charge per residue.
- * Non-polar hydrogens:
 - * Always merge

5/13/08

Using AutoDock 4 with AD

Carbon Atoms can be either Aliphatic or Aromatic Atom Types

- * Solvation Free Energy
 - Based on a partial-charge-dependent variant of Stouten method.
 - Treats aliphatic (°C') and aromatic (°A') carbons differently.
- * Need to rename ligand aromatic 'C' to 'A'.
- st ADT determines if ligand is a peptide:
 - If so, uses a look-up dictionary.
 - If not, inspects geometry of 'C's in rings. Renames 'C' to 'A' if flat enough.
 - Can adjust 'planarity' criterion (15° detects more rings than default 7.5°).

Defining Ligand Flexibility

- * Set Root of Torsion Tree:
 - By interactively picking, or
 - Automatically.
 - * Smallest 'largest sub-tree'.
- * Interactively Pick Rotatable Bonds:
 - * No 'leaves';
 - No bonds in rings;
 - * Can freeze:
 - Peptide/amide/selected/all;
 - * Can set the number of active torsions that move either the most or the fewest atoms

Setting Up Your Environment

- * At TSRI:
 - * Modify .cshre
 - Change PATH & stacksize:
 - setenv PATH (/mgl/prog/\$archosv/bin:/tsri/python:\$path)
 % limit stacksize unlimited
- * ADT Tutorial, every time you open a Shell or Terminal, type:

 * % source /tsri/python/share/bin/initadtcsh
- To start AutoDockTools, type:
 - % cd tutorial % adt1
- * Web

 - http://autodock.scripps.edu http://mgltools.scripps.edu

1	2
	J

Choose the Docking Algorithm

- * SA.dpf Simulated Annealing
- * GA.dpf Genetic Algorithm
- * LS.dpf Local Search
- graden enhagement + Adm'Y
- * Solis-Wets (SW)
- * Pseudo Solis-Wets (pSW)
- * GALS.dpf Genetic Algorithm with Local Search, *i.e.* Lamarckian GA

5/13/08

Using AutoDock 4 with ADT

Run AutoGrid

- * Check: Enough disk space?
 - * Maps are ASCII, but can be ~2-8MB!
- * Start AutoGrid from the Shell:

% autogrid4 -p mol.gpf -l mol.glg & % autogrid4 -p mol.gpf -l mol.glg ; autodock4 -p mol.dpf -l mol.dlg

- * Follow the log file using:
 - % tail -f mol.glg
 - * Type <Ctrl>-C to break out of the 'tail -f' command
- Wait for "Successful Completion" before starting AutoDock

5/13/08

utoDock 4 with ADT

Run AutoDock

- * Do a test docking, ~ 25,000 evals
- * Do a full docking, if test is OK, $\tilde{}$ 250,000 to 50,000,000 evals
- * From the Shell:
 - * % autodock4 -p yourFile.dpf -l yourFile.dlg &
- * Expected time? Size of docking log?
- * Distributed computation
 - * At TSRI, Linux Clusters
 - % submit.py stem 20
 % recluster.py stem 20 during 3.5

5/13/08

Using AutoDock 4 with ADT

42

Analyzing AutoDock Results

- * In ADT, you can:
 - Read & view a single DLG, or
 - Read & view many DLG results files in a single directory
 - Re-cluster docking results by conformation $\&\,\mathrm{view}$ these
- Outside ADT, you can re-cluster several DLGs
 - * Useful in distributed docking

 * % recluster.py stem 20 [during|end] 3.5

Viewing Conformational Clusters by **RMSD**

- * List the RMSD tolerances
 - Separated by spaces
- * Histogram of conformational clusters
 - * Number in cluster versus lowest energy in that cluster
- Picking a cluster
 - * makes a list of the conformations in that cluster;
 - * set these to be the current sequence for states player.

Advanced Topics

- * Stochastic search methods rely on random numbers
- * Random Number Generator, RNG

Using AutoDock 4 with ADT

Random number generator

- * RNG needs a seed or seeds.
 - Different seeds lead to different sequences of random numbers
- * SA and GA use different RNGs
 - * SA needs 1 seed
 - * GA & LGA need 2 seeds
- * A seed can be:
 - * A long integer, say "3141529"; or
 - * "time" = number of seconds since 1970 Jan 1; or
 - * "pid" = UNIX process ID of this job

Acknowledgments

* Ruth Huey

* Rik Belew (UCSD)

* William Lindstrom

* Bill Hart (Sandia)

- * David S. Goodsell * Michel Sanner
- * Scott Halliday
- * Chris Rosin * Max Chang
- * Sophie Coon * Daniel Stoffler
- * Flavio Grynszpan (TSRI)
- Michael Pique
- * Art J. Olson
- * Many patient ADT users