
1

Using AutoDock 4 for
Virtual Screening

Written by William Lindstrom, Garrett M. Morris,

 Christoph Weber and Ruth Huey

The Scripps Research Institute
Molecular Graphics Laboratory

10550 N. Torrey Pines Rd.
La Jolla, California 92037-1000

USA

29 January 2008, v2

2

Contents

Contents ..2

Introduction...4
Before We Start…..4

FAQ – Frequently Asked Questions..7

Exercise One: Populating the Ligand Directory: obtaining mol2 files......9
NCI Diversity Set ...9
ZINC ...9
Documentation...9
Procedure:..10

Exercise Two: Processing the ligands: mol2 to pdbqt.12
Procedure:..12

Exercise Three: Profiling the library: determining the covering set of
Atom Types:..14

Procedure:..14

Exercise Four: Preparing the receptor: pdb to pdbqt.16
Procedure:..16

Exercise Five: Preparing AutoGrid Parameter Files for the library..........18
Procedure:..18

Exercise Six: Calculating atomic affinity maps for a ligand library using
AutoGrid. ...20

Procedure:..20

Exercise Seven: Validating the Protocol with a Positive Control22
Procedure:..22

Exercise Eight: Preparing the Docking Directories and Parameter Files
for each ligand in a library. ...24

Procedure:..24

Exercise Nine: Launching many AutoDock jobs...26
Procedure:..26

Exercise Ten: Identifying the Interesting Results to Analyze.28
Procedure:..28

Exercise Eleven: Examine Top Dockings..30

Using the TSRI cluster: garibaldi...32

3

Files for exercises:...34
Input Files:..34
Results Files ..34

Ligand ..34
Macromolecule ..34
AutoGrid...34
AutoDock ...34

Appendix A: Usage for AutoDockTools Scripts..35

4

Introduction

This tutorial will introduce you to the process of virtual screening
using UNIX shell commands and python scripts in the AutoDock suite
of programs. There are nine steps in the tutorial in which we will
prepare a library of ligand files and corresponding AutoGrid and
AutoDock parameter files for the library, use AutoGrid to calculate
maps, launch AutoDock calculations for each ligand (see Figure 1.1
below) followed by two analysis steps in which we will extract and
evaluate the results (Exercises 10 and 11, not shown). In addition, we
will focus on the data structures and documentation necessary for large
scale calculations.

Before We Start…

We’ll use the directory /usr/tmp for the tutorial today. In practice
you’ll use a directory of your own choosing.

Open a Terminal window and then type this at the UNIX, Mac OS X
or Linux prompt:

Figure 1.1 VS Tutorial Map

System requirements: this
tutorial requires that you
have cvs on your computer
as well as MGLTools1.4.6,
autogrid4 and autodock4.

ZINC

*.mol2

.pdbqt x1hpv_.gpf

x1hpv.pdb

x1hpv.pdbqt

x1hpv*map*

5

cd /var/tmp
mkdir tutorial
cd tutorial
pwd

We will represent directories as shaded boxes connected with lines to
illustrate the data structure built in these exercises. This box represents
the ‘tutorial’ directory you have just created.

Set up for today’s exercises by checking out the VSTutorial files from
CVS, Concurrent Versions System. First setup access to CVS:

setenv CVSROOT :pserver:anonymous@mgl1.scripps.edu:/opt/cvs
echo $CVSROOT
cvs login
(When asked for a password, just press return.)

Next, in the /usr/tmp/tutorial directory on the computer you are
using here in the training room, check out the tutorial:

cvs co VSTutorial
cd VSTutorial

tutorial

Type this:

Note: when you are
dealing with large
volumes of data, you
want to keep it local so
that you don’t
overburden the file
system.

Type this:

Type this:

tutorial

VSTutorial

Results
scripts

ligands4 *
ind.pdb *
ligand.list *
x1hpv.pdb *
x1hpv.gpf *
ligand_x1hpv.dpf *
prepare_ligand4.py
examine_ligand_dict.py
summarize_results4.py
prepare_dpf4.py
README

dlgs x1hpv.pdbqt
x1hpv.gpf

ZINC*_x1hpv.dlg
ind_x1hpv.dlg

Note: in your own
experiment, your
files would replace
the files marked
with *

Note: Results and
the directories under
it are included here
only as backup.

Figure 1.2 CVS Data

TSRI only: on Apple
computers you may need
to access cvs like this:
/sw/bin/cvs login
Also: ignore any message
about .cvspass errors.

6

#!/bin/csh
#
$Id: ex00.csh,v 1.3 2005/01/31 18:11:28 lindy Exp $
#

Because this script uses "pwd" to set VSTROOT it matters
where (which directory) you run it from. This script
should be run as "source ./scripts/ex00.csh" So,
after you did your "cvs co VSTutorial" a "VSTutorial"
directory was created and that's the one that should be
your working directory when you source this script.
#
Set up the root directory of the Virtual Screening
Tutorial
#
setenv VSTROOT `pwd`

$VSTROOT:
a short cut to the directory in
which your Virtual Screening
Tutorial activities will take
place.

tutorial

VSTutorial

$VSTROOT

Results scripts

Type this: source scripts/ex00.csh
echo $VSTROOT

Figure 1.3 $VSTROOT

Note: here we use the
backward-slanted single
quotation mark. UNIX
replaces strings enclosed by
this character by the result of
executing them.
Here `pwd` is replaced by
‘/usr/tmp/tutorial/VSTutorial’
before setenv is executed.

You must setup your environment to access to python, adt,
autodock4 and autogrid4.

For TSRI users:
source scripts/setpath4.csh

(others need to edit the script for their local file systems)
Type this:

Note: you will need to source this
script in any new terminal you
open during this tutorial to
properly set up the environment
in that new terminal.

7

FAQ – Frequently Asked Questions

1. What library should I use for screening?

If you want to try and find novel compounds, you probably
want to use a library designed for diversity, one which probes
a large ‘chemical space.’ If there are small molecules which
are known to bind to your macromolecule, you may want to
construct a tailored library of related compounds.

2. How much computational time should be invested in each
compound? How many dockings, how many evaluations?

It depends on your receptor and on the computational resources
available to you. One recent successful AutoDock Virtual
Screening used 100 dockings with 5,000,000 evaluations per
docking per compound.

3. How do I know which docking results are ‘hits’?

When the results are sorted by lowest-energy, the compounds
which bind as well as your positive control or better can be
considered potential hits. (Remember to allow for the ~2.1
kcal/mol standard error of AutoDock). If you have no positive
control, consider the compounds with the lowest energies as
potential hits.

4. What’s the best way to analyze the results?

Sort them by lowest energy first, then use ADT to inspect the
quality of the binding.

5. Will I need to visualize the results with the best energies?

Generally it is wise to inspect the top 30 to 50 results. Some
people advocate visually inspecting the top 100-400 hits.

6. What should I look for when I visualize a docked compound?

The first thing to check is that the ligand is docking into some
kind of pocket on the receptor. The second is that there is a
chemical match between the atoms in the ligand and those in
the receptor. For example, check that carbon atoms in the

8

ligand are near hydrophobic atoms in the receptor while
nitrogens and oxygens in the ligand are near similar atoms in
the binding pocket. Check for charge complementarity. Check
whatever else you may know about your particular system: for
instance, if you know that the enzymatic action of your protein
involves a particular residue, examine how the ligand binds to
that residue. In the case of HIV protease, good inhibitors bind
in a mode which mimics the transition state.

7. Where can I get help?

The AutoDock mailing list is a good place to start. Information
about it and other AutoDock resources can be found on the
AutoDock Web site:

http://autodock.scripps.edu

9

Exercise One: Populating the Ligand Directory:
obtaining mol2 files

The library used for a virtual screening experiment is a selected group of
ligand files. Sources of libraries include Maybridge (www.maybridge.com),
MDL Mentor, Available Chemicals (UW-Madison), NCI among many
others. Libraries are characterized according to their uniqueness, diversity
and drug-likeness which is based on Lipinsky’s “Rule of Five” which
consists of four criteria: molecular weight <500, logP <5, number of
hydrogen bond donors<5 and number of hydrogen bond acceptors < 10.

The size of the library which can be screened depends on the available
computational resources. Typically libraries number in the tens to hundreds
of thousands of files. It is practically impossible to test exhaustively any
large chemical database. Libraries are constructed to maximize the chances
of obtaining good ‘hits’ by focusing on ligand diversity.

NCI Diversity Set
To expedite drug discovery, the National Cancer Institute maintains a
resource of more than 140,000 synthetic chemicals and 80,000 natural
products for which it can provide samples for high-through-put screening
(HTS). The NCI Diversity Set is a collection of 1990 compounds selected
to represent the structural diversity in the whole resource.

ZINC
ZINC Is Not Commerical is a free database of over 4.6 million
commercially-available compounds for virtual screening
(blaster.docking.org/zinc). The first exercise illustrates setting up a data
structure and populating the Ligands directory with 115 mol2 files from
ZINC.

Documentation
Documenting each step of a computational experiment in sufficient detail to
be able to reproduce it is an essential requirement. README files are one
common form of documentation. Important sections in a README file for
computation experiments include: Project, Author, Date, Task, Data sources,
Files in this directory, Output files, Running Scripts and other notes on the
location of the executable and environmental settings.

In the “Before We Start…” section, you set up local copies of the input files
and executable scripts we will use today.

10

 Procedure:

1. In ex01.csh, we create a working directory called VirtualScreening
and two subdirectories: one called Ligands where we will do all the
preparation of the ligand files and a second called etc where we’ll keep
a few extra, useful files.
Next we populate the Ligands directory by splitting a multimolecule
file from ZINC into 115 separate files.
Finally, we add a positive control, ind.pdb, to the list of ligands.

#!/bin/csh# Create the directory in which all your Virtual
Screening Tutorial activities will take place:

cd $VSTROOT
mkdir VirtualScreening

Create the Ligands and etc subdirectories:
cd VirtualScreening
mkdir Ligands
mkdir etc

#make the Ligands directory the current working directory
cd Ligands

use the UNIX utility csplit to divide the multi-molecule mol2
file into separate files
cat $VSTROOT/zinc.mol2|csplit –ftmp –n –ks –
‘%^@.TRIPSO.MOLECULE%’ ‘/^@.TRIPOS.MOLECULE/’ ‘{* }’

#Rename the tmp file according to ZINC identifier
Here is the outline of how we do this:
1. Extract ZINCn8 from the tmpNNNN file and set to variable
2. If the Zn8.mol2 file does not exit, rename tmpNNNN files

foreach f (tmp*)
echo $f
set zid = `grep ZINC $f`
if !(-e “$zid”.mol2) then
set filename = “$zid”.mol2
else foreach n (`seq –w 1 99`)
if !(-e “$zid”_”$n”.mol2) then
set filename = “$zid”_”$n”.mol2
break
endif
end
endif
mv –v $f $filename
end

Copy positive control ind.pdb down into Ligands:
cp $VSTROOT/ind.pdb .

Create the list of ligands in the etc directory:
\ls *mol2 *.pdb > $VSTROOT/VirtualScreening/etc/ligand.list

Note: here we split a
file with many
molecules in mol2
format into separate
files to be processed in
next exercises.

11

source $VSTROOT/scripts/ex01.csh

2. Let’s look at the list we used
foreach f (`cat ../etc/ligand.list`)
 echo $f
 end

3. To confirm that the foreach loop did what we expected, list the
mol2 files. Use wc (word count) for counting. Check that the number
of mol2 files 115 plus 1 the number of pdb files, i.e. ind.pdb the
positive control, matches the number of ligands in the ligand.list file
116.
\ls *.mol2 | wc –l
\ls *.pdb |wc -l
wc -l ../etc/ligand.list

4. Document the experiment:
cd $VSTROOT
vim README

Fill in Project, Author, Date, Data sources, Files in this directory
and an entry for this section’s procedure.

tutorial

VSTutorial

$VSTROOT

VirtualScreeningResults scripts

etc Ligands

Type this:

ZINC*.mol2
ind.pdb

ligand.list

Type this:

Figure 1.4 Exercise 1 Result

Type this:

On Mac OS X: source $VSTROOT/scripts/ex01_mac.csh

12

Exercise Two: Processing the ligands: mol2 to
pdbqt.

An AutoDock experiment results in docked ligand structures which
represent the best (lowest energy) conformation found in the specified
search space. Input molecule files for an AutoDock experiment must
conform to the set of atom types supported by AutoDock. This set
consists of united-atom aliphatic carbons, aromatic carbons in cycles,
polar hydrogens, hydrogen-bonding nitrogens and directionally
hydrogen-bonding oxygens among others, each with a partial charge.

Properly prepared molecule input files for AutoDock consist of pdb-
like records for each atom, conforming to this AutoDock atom type
set. Thus file preparation must include fixing a number of potential
problems such as missing atoms, added waters, more than one
molecule, chain breaks, alternate locations etc.

In the tutorial “Using AutoDock 4 with ADT”, you prepared the ligand
file using ADT, a graphical user interface. It is not reasonable to try to
prepare thousands of ligand files using a graphical user interface.
Tasks of this magnitude must be automated. In this exercise, we
introduce prepare_ligand4.py, a python script in the AutoDockTools
module, and show you how to use it in a Unix foreach loop. Details of
its usage can be found in the Appendix.

Procedure:

source $VSTROOT/scripts/ex02.csh

#!/bin/c s h
$Id: ex02.csh,v 1.2 2005/01/31 00:48:01 lindy Exp$
#

use the prepare_ligand4.py script to create pdbqt files

cd $VSTROOT/VirtualScreening/Ligands
foreach f (`ls *`)
 echo $f
 pythonsh ../../prepare_ligand4.py -l $f –d ../etc/ligand_dict.py
end

Type this:

Note:
The prepare_ligand.py
script takes as input a pdb
or mol2 file�which is
specified on the command
line with the ‘-l’ switch
and writes�a pdbqt file
with charges, root, and
rotatable bonds defined.
The ‘-d’switch specifies
the filename of a python
dictionary that
describes�the atomtypes
and other attributes of the
set of input
files processed.�This
information will be used
in the next exercise.

13

2. Examine the results of this script:
\ls *.pdbqt |wc
\ls ../etc

3. Document:
Add an entry for this section’s procedure to the README file. Record
warning messages.
The UNIX ‘script filename’ command is an alternative to the
README file convention. It copies all the text from the terminal into
the specified transcript file. Here, you could start a transcript before the
foreach loop. To stop recording the transcript file, type Control D.

tutorial

VSTutorial

$VSTROOT

VirtualScreeningResults scripts

etc Ligands

ZINC*.pdbqt
ind.pdbqt

ligand_dict.py

Figure 1.5 Exercise 2 Result
Note:
ligand_dict.py is
generated by
prepare_ligand4.py
and used in
Exercise 3.

Type this:

14

Exercise Three: Profiling the library: determining
the covering set of Atom Types:

In docking a ligand against a receptor, AutoDock uses a special
representation of the receptor: a set of grid-based potential energies
files called 'grid maps'. AutoGrid is used to pre-calculate one grid
map for each atom type present in the ligand to be docked. A grid map
consists of a three dimensional lattice of regularly spaced points,
surrounding the receptor (either entirely or partly) and centered on
some region of interest of the macromolecule under study. Each point
within the grid map is the sum of the pairwise potential interaction
energy of a probe atom of a particular type with each of the atoms in
the macromolecule. The 3-dimensional volume covered by the grid
maps in conjunction with the 'n' active torsions in the ligand defines
the 6 + 'n' dimensioned search space.

In docking a set of ligands against a single receptor, you need only one
grid map for each atom type in the covering set of atom types present
in the ligands. In this exercise we write a summary of the ligand
library in order to determine the covering set of atom types and to
exclude ligands with too many atoms, atom types, rotatable bonds, etc

Procedure:

Notice the covering set of atoms. You may decide to remove some
stems based on this information.

source $VSTROOT/scripts/ex03.csh

Note: AutoDock4
limits the number of
atoms in the ligand to
2048 and the
number of rotatable
bonds in a ligand to 32.

#!/bin/csh
$Id: ex03.csh,v 1.4 2005/01/31 02:23:44 lindy Exp $
The examine_ligand_dict.py scripts reads the
ligand_dict.py�written in Exercise 2 and writes a summary
describing the set of�ligands to stdout.

cd $VSTROOT/VirtualScreening/etc
cp ../../examine_ligand_dict.py .
./examine_ligand_dict.py > summary.txt

Type this:

15

2. Examine the kinds of information in summary.txt to get an
overview of the library. You should always try to have an overview of
the library you are using.

more summary.txt

3. Add an entry for this section’s procedure to the README file.
Note, for example, the atom types found, the range of torsion
numbers….

tutorial

VSTutorial

$VSTROOT

VirtualScreeningResults scripts

etc Ligands

summary.txt

Type this:

Figure 1.6 Exercise 3 Result

16

Exercise Four: Preparing the receptor: pdb to
pdbqt.

The receptor file used by AutoDock must be in pdbqt format which is
pdb plus ‘q’ charge and ‘t’ autodock_type. To conform to the
AutoDock atom types, polar hydrogens should be present whereas
non-polar hydrogens and lone pairs should be merged, each atom
should be assigned a gasteiger partial charge.

The Receptor directory is where we process the receptor once and
only once. All the ligands will refer to this single receptor.
AutoDockTools should be familiar to you from the AutoDockTools
tutorial.

Procedure:

source $VSTROOT/scripts/ex04.csh

Note: For most atoms, the
autodock_type is the same as the
element. The autodock_type for
aromatic carbons, which for autodock
are carbons in planar cycles, is A to
distinguish them from aliphatic carbons
C. All oxygens are assumed to be able
to accept two hydrogen bond acceptors
and have the autodock_type OA. All
hydrogens are assumed to be able to be
hydrogen bond donors and have the
autodock_type HD. Sulfur and nitrogen
atoms which can accept hydrogen bonds
are autodock_types SA and NA
respectively and are distinguished from
those which cannot which have
autodock_types S and N.

#!/bin/csh
$Id: ex04.csh,v 1.2 2005/01/31 00:48:01 lindy Exp $
Create a directory called Receptor and populate it
with the supplied x1hpv.pdb file.��On your own, use
AutoDockTools to create the pdbqs file.

cd $VSTROOT/VirtualScreening
mkdir Receptor
cp ../x1hpv.pdb Receptor
cd Receptor�

echo "use adt to complete this exercise"

Type this:

17

2. Use adt to add hydrogens, charges and autodock types to the
receptor and to write x1hpv.pdbqt.

adt

 * ADT -> Grid -> Macromolecule -> Open…
- click on – on left of PDBQT files: (*.pdbqt) - button

 to show a list other file types. Click on all files (*.)
 - select x1hpv.pdb
 - click on Open

 * When processing is complete, type x1hpv.pdbqt into the file
browser which opens. Be sure to write the file in the Receptor
directory. Don’t close adt because we’ll use it in the next exercise.

3. Add an entry for this section’s procedure to the README file.

Note: Alternatively, this
preparation could be done via
the prepare_receptor4.py
script. However, if you are
working with a single receptor,
you should prepare it
interactively to optimize
selecting the search space.

tutorial

VSTutorial

$VSTROOT

VirtualScreeningResults scripts

etc Ligands Receptor

x1hpv.pdbqt Figure 1.7 Exercise 4 Result

TSRI only start adt like this:
For linux:
/mgl/prog/share/bin/adt
For apple:
Navigate to Applications folder, find
AutoDockTools and double click on it.

18

Exercise Five: Preparing AutoGrid Parameter Files
for the library

The grid parameter file tells AutoGrid the types of maps to compute,
the location and extent of those maps and specifies pair-wise potential
energy parameters. In general, one map is calculated for each element
in the ligand plus an electrostatics map. Self-consistent 12-6 Lennard-
Jones energy parameters - Rij, equilibrium internuclear separation and
epsij, energy well depth - are specified for each map based on types of
atoms in the macromolecule. If you want to model hydrogen bonding,
this is done by specifying 12-10 instead of 12-6 parameters in the gpf.

For a library of ligands, only one atom map per ligand type is required.
Each AutoGrid4 calculation creates the set of required atom maps
plus an electrostatics map and a desolvation map.

Procedure:

1. Use adt to write the Grid Parameter Files (gpf):
[If you have just written the macromolecule in Exercise Four, skip
this first step:

 * Grid -> Macromolecule -> Open…]

 * Grid -> Open GPF…
- type in ../../x1hpv.gpf
- click Open

 * Grid -> Set Map Types -> Directly…
 - add these types CL F S BR if they are not there
 - click Accept
 * Grid -> Output -> Save GPF…
 - in the file browser, navigate down to the Receptor directory

- type in x1hpv.gpf
- click Save.

#!/bin/csh
#� $Id: ex05.csh,v 1.2 2005/01/31 00:48:01 lindy Exp $
echo "Use adt to complete this exercise (05)"

Note: we read in this
reference gpf to set values for
the gridcenter and the number
of points.

19

2. Examine the grid parameter file you have prepared:

cat x1hpv.gpf | more

3. Add an entry for this section’s procedure to the README file.

4. On Linux and Mac OS X machines, type Control Z followed by bg
to put ADT in the background to continue…

tutorial

VSTutorial

$VSTROOT

VirtualScreeningResults scripts

etc Ligands Receptor

x1hpv.gpf Figure 1.8 Exercise 5 Result

Type this:

20

Exercise Six: Calculating atomic affinity maps for a
ligand library using AutoGrid.

An essential part of a successful large scale computation experiment
such as today’s virtual screening experiment is data organization; that
is, a clear directory structure should be used to organize the many
input and output files. Our plan places the receptor in a separate
directory which is to contain all the AutoGrid affinity maps calculated
for this receptor. Under the Receptor directory will be a directory for
each ligand. Each ligand directory will contain symbolic links to each
map file and to the receptor.pdbqt. Each ligand directory will have its
ligand.pdbqt file and its unique docking parameter file
x1hpv_ligand.dpf.

In this exercise, we invoke autogrid4 to calculate the required set
of atom maps for x1hpv. We’ll work in the Receptor directory and
create the symbolic links for each ligand later.

Procedure:

source $VSTROOT/scripts/ex06.csh

2. Check that the maps are there and check that there are 10 maps .

cd $VSTROOT/VirtualScreening/Receptor
ls –alt *map
ls –alt *map |wc -l

3. Add an entry for this section’s procedure to the README file.

Note: if we were studying
more than one receptor,
each would be in a separate
directory with all the
ligands subdirectories
under each receptor
directory.

#!/bin/csh
#$Id: ex06.csh,v 1.2 2007/05/09 00:48:01 lindy Exp $
1. Use autogrid4 to create the grid map files:�

cd $VSTROOT/VirtualScreening/Receptor
autogrid4 -p x1hpv.gpf -l x1hpv.glg

Type this:

Type this:

Note: the echo utility
allows you to ‘see’ what
commands are executed by
a script. Start it by typing
“set echo’. Turn it off by
typing ‘unset echo’. Try it
here by starting it before
sourcing ex06.csh

21

tutorial

VSTutorial

$VSTROOT

VirtualScreeningResults scripts

etc Ligands Receptor

x1hpv.glg
x1hpv.*.map
x1hpv.maps.xyz
x1hpv.maps.fld

Figure 1.9 Exercise 6 Result

22

Exercise Seven: Validating the Protocol with a
Positive Control

Before we go on and make larger and larger resource and time
commitments to the virtual screening experiment, let's make sure in
the next exercise that the input files are valid.

 A docking "job" is a single AutoDock process, which carries out a
number of independent docking "runs", each of which begins with the
same initial conditions. The various parameters for the docking are
usually stored in a docking parameter file, or "DPF". This is passed to
AutoDock using a command line flag (-p). Each ligand requires its
own docking parameter file.
 To write the docking parameter files we need for today’s experiment ,
we will use prepare_dpf4.py, a script in
AutoDockTools/Utilities24. Details of its usage can be found in the
Appendix.

Procedure:

Note: each ligand requires its
 own docking parameter file
because some docking
parameters are ligand specific:
types: atom types in the ligand
move: file containing the ligand
about: x,y,z coordinates of the
center for ligand rotations and
translations.
ndihe: number of active torsions

#!/bin/csh
$Id: ex07.csh,v 1.3 2005/01/31 02:23:04 lindy Exp $

Create a directory called ind_x1hpv in the etc
directory:�
cd $VSTROOT/VirtualScreening/etc
mkdir ind_x1hpv
cd ind_x1hpv

Populate the directory with the docking input files:�
cp ../../Ligands/ind.pdbqt .
ln -s ../../Receptor/x1hpv.pdbqt .
ln -s ../../Receptor/x1hpv*map* .

Create the Docking Parameter File with modified
parameters modified to shorten the autodock3 run time
by restricting the�search:�
pythonsh ../../../prepare_dpf4.py -l ind.pdbqt -r x1hpv.pdbqt \
 -p ga_num_evals=25000 \
 -p ga_run=2�

Run autodock4 and examine the output:�
autodock4 -p ind_x1hpv.dpf -l ind_x1hpv.dlg

Note: We set up symbolic links
to the receptor files from each
ligand subdirectory. That
enables us to have only 1 set of
receptor files. You can show
symbolic links with “ls –l”

Suggestion: use echo to follow
the processing of a single
ligand here. Type ‘set echo’ to
start and ‘unset echo’ to stop
the utility

23

source $VSTROOT/scripts/ex07.csh

2. You can examine the parameters for a short run contained in this
docking parameter file.

cat ind_x1hpv.dpf | more

3. Also, you can follow the execution of the autodock job using
tail. The ‘-f’ flag makes it follow as new output is written.

tail –f ind_x1hpv.dlg

Make sure that “Successful Completion” is found at the end of the
file.

4. Add an entry for this section’s procedure to the README file.

tutorial

VSTutorial

$VSTROOT

VirtualScreeningResults scripts

etc Ligands Receptor

ind_x1hpv

Type this:

ind.pdbqt
x1hpv.pdbqt
x1hpv*map*
ind_x1hpv.dpf
ind_x1hpv.dlg

x1hpv.pdbqt
x1hpv*map*

Figure 2.0 Exercise 7 Result

Type this:

Type this:

24

Exercise Eight: Preparing the Docking Directories
and Parameter Files for each ligand in a library.

In this exercise, we repeat the steps we used for the positive control in
the last exercise for each ligand to be screened. There is a separate
directory for each ligand. Each ligand directory contains symbolic
links to the autogrid maps and to the receptor. Each ligand directory
has its unique ligand.pdbqt and ligand.dpf files.

Procedure:

source $VSTROOT/scripts/ex08.csh

#!/bin/csh
$Id: ex08.csh,v 1.5 2007/05/31 16:33:49 lindy Exp $
#�Create the Dockings directory:

cd $VSTROOT/VirtualScreening
mkdir Dockings
cd Dockings

Create a subdirectory named <ligand>_x1hpv and populate
it with the docking input files: a) the pdbqt from the
Ligands directory will be copied directly; b) the maps
will be linked to the Receptor directory; and, c) the dpf
file will be created using prepare_dpf4.py:

foreach f (`ls ../Ligands/*.pdbqt`)
set name = `basename $f .pdbqt`
echo $name
mkdir "$name"_x1hpv
cd "$name"_x1hpv
cp ../"$f" .
ln -s ../../Receptor/x1hpv.pdbqt .
ln -s ../../Receptor/x1hpv*map* .
pythonsh ../../../prepare_dpf.py -l `basename $f` -r x1hpv.pdbqt \

-p ga_num_evals=1750000 \
-p ga_pop_size=150 \
-p ga_run=20 \
-p rmstol=2.0

cd ..
end

Type this:

Suggestion: unset echo here if
it is set because this script
involves many steps for many
ligands.

Note: the docking parameters
here are more realistic than
those used in Exercise Seven.

25

2. Examine a result of this script:

pwd
ls
ls | wc –l
ls ZINC00000480_x1hpv

3. Add an entry for this section's procedure to the README file.

tutorial

VSTutorial

$VSTROOT

VirtualScreeningResults scripts

etc Ligands Receptor Dockings

ind_x1hpv ind_x1hpvdiversity*_x1hpv

diversity*.pdbqt
x1hpv.pdbqt
x1hpv*map*
diversity*_x1hpv.dpf

x1hpv.pdbqt
x1hpv*map*

ind.pdbqt
x1hpv.pdbqt
x1hpv*map*
ind_x1hpv.dpfFigure 2.1 Exercise 8 Result

Type this:

Note: the positive control, ind,
has been processed in the same
way as the ligands we are
screening.

26

Exercise Nine: Launching many AutoDock jobs.

In this exercise we will use previously computed results.

Procedure:

source $VSTROOT/scripts/ex09.csh

Specific details on editing this script to launch actual computations are
compute-resource dependent. Here at Scripps:

• to run locally
replace
 echo "autodock4 -p $d.dpf -l $d.dlg
with

autodock4 -p $d.dpf -l $d.dlg
• to run on garibaldi (see section “Using the TSRI cluster:

garibaldi” for details)
replace
 # submit4.py $d 1
with

submit4.py $d 1

#!/bin/csh
#�$Id: ex09.csh,v 1.4 2004/12/09 02:25:23 lindy Exp $
1. Create a file with a list of the dockings to run:�
cd $VSTROOT/VirtualScreening/Dockings
/bin/ls > ../etc/docking.list

2. For the purposes of this tutorial, instead of running
#autodock3 as� you normally would, simply copy the results
of a docking that we've done for you previously.�

foreach d (`cat ../etc/docking.list`)
 echo $d
 cd $d
 echo "autodock4 -p $d.dpf -l $d.dlg"
 # submit4.py $d 1
 cp ../../../Results/dlgs/"$d".dlg .
 cd ..
 end

Type this:

Note: We are copying
dlg files here, NOT
creating new ones with
autodock.

27

2. Check that the docking logs exist in the directories under the
Dockings directory:

cd $VSTROOT/VirtualScreening/Dockings
ls –alt /ZINC00000480_x1hpv

3. Add a section for this exercise's procedure to the README file.

tutorial

VSTutorial

$VSTROOT

VirtualScreeningResults scripts

etc Ligands Receptor Dockings

ind_x1hpv ind_x1hpvZINC*_x1hpv

ZINC*_x1hpv.dlg ind_x1hpv.dlg

Figure 2.2 Exercise 9 Result

Type this:

28

Exercise Ten: Identifying the Interesting Results to
Analyze.

The first step of analyzing the results is to build a list sorted by energy
of the lowest energy docking for each ligand. To do this we first
collect all the lig_rec.NNN.dlg to get lig_rec.energies and then sort
the lig_rec.energies to create the file lig_rec.energies.sort

Procedure:

source $VSTROOT/scripts/ex10.csh

#!/bin/csh
$Id: ex10.csh,v 1.4 2007/06/31 02:27:03 lindy Exp $�#��
Extract the Free Energy of Binding for the lowest energy
in the largest cluster from the dlg files using the python
script summarize_results4.py�:�

cd $VSTROOT/VirtualScreening/Dockings
foreach d (`/bin/ls`)
 echo $d
 pythonsh ../../summarize_results4.py –d $d –t 2. –L –a –o ../etc/summary_2.0.txt
 end

Sort the summary_2.0.txt file based on the lowest energy conformation in
the largest cluster to find your best dockings:�

cd ../etc
cat summary_2.0.txt|sort –k5n –t, > summary_2.0.sort

Type this:

Note:
 -k5n means
sort on field 5
here the lowest
energy in the
largest cluster.
-t, means to use
commas as field
separators

Note: Clustering and energy
are two measures of the
success of a docking. Here
we record the overall lowest
energy and the lowest
energy conformation in the
largest cluster.

29

2. Find your ligands which bind with the lowest energy (best binders)
at the top of the list in all_energies.sort. Locate the positive control.
Note the ligands that have better energies than it.

cd ../etc
head summary_2.0.sort

3. Add an entry for this section's procedure to the README file.

tutorial

VSTutorial

$VSTROOT

VirtualScreeningResults scripts

etc Ligands Receptor Dockings

ind_x1hpv ind_x1hpvZINC*_x1hpv

summary_2.0.txt
summary_2.0.sort

Figure 2.3 Exercise 10 Result

30

Exercise Eleven: Examine Top Dockings.

1. Start adt:
cd ../Dockings
adt

2. Setup viewer:
* File->Preferences->Set Commands to be Applied on Objects
 - select colorByAtomType in the Available commands list
 - click on '>>'
 - click on 'OK'

3. Setup receptor:
* Read in the file:
 File->Read Molecule
 -click on "PDB files (*.pdb)"
 -select "AutoDock files (pdbqt) (*.pdbqt)
 -select "x1hpv.pdbqt"

* Set center of rotation:
 -click on pointing finger icon
 -click on PCOM level: Molecule and select Atom from list
 -click on bar at right of "printNodeNames" and select centerOnNodes"
 -draw a box around the water residue
 (Box should be YELLOW if PCOM level is Atom).

* Display msms surface:
 Compute->Molecular Surface->Compute Molecular Surface
 -click on OK in MSMS Parameters Panel widget
 Color->by Atom Type
 -click on MSMS-MOL and click on OK

* Make molecular surface transparent using the DejaVu GUI:
 -click on Sphere/Cube/Cone (DejaVuGUI) Button
 -click on + root
 -click on + x1hpv
 -select MSMS-MOL

Note: If you have adt
running in the background,
simply type fg here.
TSRI only: start adt using
/mgl/prog/share/bin/adt14

Note: If x1hpv.pdbqt is
already read it, do not read
it in again.

31

-click on Material: Front
-change Opacity to .7
-click on Material: None
-select root as current object in viewer

* Close the DejaVu GUI:
 -click on Sphere/Cube/Cone (DejaVuGUI) Button
* ADJUST the view:

-SHIFT-middle button to zoom in on x1hpv’s water

4. Repeat the following steps for each docking to be evaluated. Here
we show the procedure using ZINC00057384_x1hpv.dlg as an
example:

1. Analyze-> Docking Logs->Open
-select ZINC00057384_x1hpv.dlg
-click on Open
-click on OK

2. Analyze-> Clusterings->Show
 write a printable version of histogram:

-click on histogram’s Edit-> Write
-type in this filename: “ZINC00057384_x1hpv.ps”
-click on Save

3. Visualize the lowest energy docked conformation
-type ‘d’ in the viewer to turn off depth-cueing
-click on lowest energy bin in the histogram to

 open the player
-click on right arrow to set ligand to 1_1 conformation
Assess:

-is the ligand in a pocket?
-is each atom in the ligand in a chemically

 favorable position?
Show hydrogen bonds:

-click on player’s ampersand for play options
-click on Build H-bonds and Show Info
-Record number of hbonds formed
-Display Distance(1.741) or Energy(-5.931)

3. Clea n-up for next docking log
-click on Close on ‘ZINC00057384’ widget
-click on File->Exit on ‘ZINC00057384:rms=2.0

 clustering’ histogram
-Analyze->Dockings->Clear to delete this docking

5. Add entries for this section’s procedure to the README file

Note: You cannot change the
Material properties of a
geometry (such as its opacity)
if it inherits Materials from its
parent. To change this, set the
inheritMaterial flag to False:
 -click on Current Geom
Properties button to display a
list of checkbuttons for
different attributes of the
current geometry.
-click on inheritMaterial if
necessary to turn it off.

32

Using the TSRI cluster: garibaldi

All input file preparation should be done on your local computer. The
interactive head node on the garibaldi cluster is used to transfer
the files from your computer to the cluster where the calculations will
be carried out. For today’s tutorial, we will demonstrate launching a
sample docking and then use previously computed results.

We create a tar file of the VSTutorial directory tree:
cd /usr/tmp/tutorial
tar –czvf VSTutorial.tar.gz VSTutorial

Next transfer it to garibaldi using sftp.
sftp garibaldi
put VSTutorial.tar.gz
exit

Log on to garibaldi:
ssh garibaldi

Your environment on the garibaldi cluster must be set so that
autodock4 executable and the python script submit4.py are in
your path. We will help you do this by editing the .cshrc file in your
account on garibaldi. Make sure the directory
/garibaldi/applications/people-b/autodock (which contains the
autodock4 executable) is in your path.

 set path=($path /garibaldi/people-b/applications/autodock)

Next uncompress the VSTutorial tree:
tar -xzvf VSTutorial.tar.gz

We will demonstrate the use of the submit4.py script by launching
2 jobs based on the positive control, indinavir.
cd VSTutorial/VirtualScreening/etc/ind_x1hpv
submit4.py ind_x1hpv 2

Notice that the jobs are named ######.garibaldi and the name of the
script which built the job is given. Here the scripts were named
ind_x1hpv001.j and ind_x1hpv002.j. This naming
convention is built into submit.py

The pbs command qstat is used for tracking job status:
qstat | grep yourname

Note: In our usage here of
the tar command, we
include the verbose flag,
-v, to show what is going
on.

Type this:

Note: Here we are
submitting 2 jobs so that
you can try qdel. For a
VS experiment submit 1.
Submitting more than 1
job is not necessary and
only makes analyzing the
results unnecessarily
complicated.

33

The pbs command qdel is used for removing a job from the queue:
qdel ######.garibaldi

You will receive an email when each job finishes that includes
information about whether the job finished successfully or not.

For sanity reasons, we will not be launching all the jobs. To do so you
would use a foreach loop like this:

foreach f (`/bin/ls $VSTROOT/VirtualScreening/Ligands/*.pdbqt`)
set name = `basename $f .pdbqt`
echo $name
cd $VSTROOT/VirtualScreening/Dockings/”$name”_x1hpv
submit4.py $name 10
end

34

Files for exercises:

Input Files:
x1hpv.pdb, ZINC.mol2, x1hpv.gpf

Results Files

Ligand

<ligand>.pdbqt

Macromolecule

x1hpv.pdbqt

AutoGrid

x1hpv.gpf
x1hpv.*.map, x1hpv.maps.fld, x1hpv.maps.xyz

AutoDock

ind_x1hpv.dpf, ind_x1hpv.dlg,
<ligand>_x1hpv.dpf, <ligand>_x1hpv.dlg

35

Appendix A: Usage for AutoDockTools Scripts

The python scripts in AutoDockTools/Utilities24 module are
customizable via input flags:

prepare_ligand4.py –l ligand_filename
-l ligand filename (required)

 Optional parameters include (defaults are in parentheses):

-v verbose output (none)
-o output pdbqt_filename (ligandname.pdbqt)
-d dictionary filename to write summary information of per
molecule atomtypes and number of active torsions (none)
-A type(s) of repairs to make (none):

bonds
 hydrogens
 bonds_hydrogens
-C do not add charges (add gasteiger charges)
-p preserve input charges on atom type, eg –p Zn
-U cleanup type, what to merge (nphs_lps)
 nphs
 lps
 “ “
-B types of bonds to allow to rotate (backbone)
 amide
 guanidinium

amide_guanidinium
“ “

-R index for root
-F check for and use largest non-bonded fragment (False)
-M interactive (default is automatic write)
-I string of bonds to inactivate composed of of zero-based
 atom indices eg 5_13_2_10 will inactivate atoms[5]-
 atoms[13] bond and atoms[2]-atoms[10] bond
-Z inactivate all active torsions

Note: You can generate any
of these usage statements
by typing the script name
with no input. eg:
prepare_ligand.py

36

prepare_receptor4.py –r filename
-r receptor_filename

 Optional parameters:"
 -v verbose output
 -o pdbqt_filename (receptor_name.pdbqt)
 -A type(s) of repairs to make (“ “):

'bonds_hydrogens': build bonds and add hydrogens
 'bonds': build a single bond from each nonbonded atom

 to its closest neighbor
 hydrogens': add hydrogens
 'checkhydrogens': add hydrogens only if there are none already
 'None': do not make any repairs
 (default is 'checkhydrogens')
 -C preserve all input charges ie do not add new charges
 (default is addition of gasteiger charges)

-p preserve input charges on specific atom types, eg -p Zn -p Fe
 -U cleanup type:
 'nphs': merge charges and remove non-polar hydrogens
 'lps': merge charges and remove lone pairs
 'waters': remove water residues
 'nonstdres': remove chains composed entirely of

residues of types other than the standard 20 amino acids
 'deleteAltB': remove XX@B atoms and rename XX@A atoms->XX
 (default is 'nphs_lps_waters_nonstdres')
 -e delete every nonstd residue from any chain
 'True': any residue whose name is not in this list:
 ['CYS','ILE','SER','VAL','GLN','LYS','ASN',
 'PRO','THR','PHE','ALA','HIS','GLY','ASP',
 will be deleted from any chain. NB: there are no
 nucleic acid residue names at all in the list.
 (default is False which means not to do this)

-M mode (automatic)
 interactive (do not automatically write outputfile)

prepare_dpf4.py -l ligand_filename –r receptor_filename
-l ligand_filename
-r receptor_filename

 Optional parameters:
 -o dpf_filename (ligand_receptor.dpf)

-i template dpf_filename
-p parameter_name=new_value
-k list of parameters to write
(default is genetic_algorithm_local_search_list)

 -v verbose output

37

summarize_results4.py -d directory
-d directory

 Optional parameters:
-t rmsd tolerance (default is 1.0)
-f rmsd reference filename
(default is to use input ligand coordinates from docking log)
-b print best docking info only (default is print all)
-L print largest cluster info only (default is print all)
-B print best docking and largest cluster info only
(default is print all)
-o output filename
(default is 'summary_of_results')
-a append to output filename
(default is to open output filename 'w')
-k build hydrogen bonds
-r receptor filename

 -u report unbound energy
 -v verbose output

