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THE ART OF MOLECULAR DYNAMICS SIMULATION

The extremely powerful technique of molecular dynamics simulation involves solv-
ing the classical many-body problem in contexts relevant to the study of matter at
the atomistic level. Since there is no alternative approach capable of handling this
broad range of problems at the required level of detail, molecular dynamics meth-
ods have proved themselves indispensable in both pure and applied research. This
book is a blend of tutorial and recipe collection, providing both an introduction to
the subject for beginners and a reference manual for more experienced practition-
ers. It is organized as a series of case studies that take the reader through each of
the steps from formulating the problem, developing the necessary software, and
then using the programs to make actual measurements.

This second edition has been extensively revised and enlarged. It contains a sub-
stantial amount of new material and the software used in the case studies has been
completely rewritten.

Dennis Rapaport received his B.Sc. and M.Sc. degrees in physics from the Uni-
versity of Melbourne, and his Ph.D. in theoretical physics from King’s College,
University of London. He is a Professor of Physics at Bar-Ilan University and is
currently departmental chairman. He has held visiting appointments at Cornell Uni-
versity and IBM in New York, is an Adjunct Professor at the University of Georgia
and a Fellow of the American Physical Society. His interest in computer modeling
emerged during his undergraduate years and his present research interests include
both the methodology of molecular dynamics simulation and its application to a
variety of fields.
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Preface to the first edition

Molecular dynamics simulation provides the methodology for detailed microscopic
modeling on the molecular scale. After all, the nature of matter is to be found in
the structure and motion of its constituent building blocks, and the dynamics is
contained in the solution to the N-body problem. Given that the classical N-body
problem lacks a general analytical solution, the only path open is the numerical
one. Scientists engaged in studying matter at this level require computational tools
to allow them to follow the movement of individual molecules and it is this need
that the molecular dynamics approach aims to fulfill.

The all-important question that arises repeatedly in numerous contexts is the re-
lation between the bulk properties of matter — be it in the liquid, solid, or gaseous
state — and the underlying interactions among the constituent atoms or molecules.
Rather than attempting to deduce microscopic behavior directly from experiment,
the molecular dynamics method — MD for short — follows the constructive ap-
proach in that it tries to reproduce the behavior using model systems. The continu-
ally increasing power of computers makes it possible to pose questions of greater
complexity, with a realistic expectation of obtaining meaningful answers; the in-
escapable conclusion is that MD will — if it hasn’t already — become an indispens-
able part of the theorist’s toolbox. Applications of MD are to be found in physics,
chemistry, biochemistry, materials science, and in branches of engineering.

This is a recipe book. More precisely, it is a combination of an introduction to
MD for the beginner, and a cookbook and reference manual for the more expe-
rienced practitioner. The hope is that through the use of a series of case studies,
in which real problems are studied, both goals can be achieved. The book can be
read from cover to cover to explore the principles and capabilities of MD, or it
can be used in cookbook style — with a certain amount of cross-referencing — to
obtain the recipe for a particular kind of computation. Some familiarity with clas-
sical and statistical mechanics, numerical methods and computer programming is
assumed.

X



X Preface to the first edition won

The case studies take the reader through all the stages from initial problem state-
ment to the presentation of the results of the calculation. The link between these
endpoints is the computer program — the recipe. The results of the simulations
are ‘experimental’ observations, in the sense that the simulation is an experiment
conducted on an actual, albeit highly idealized, substance. Some of these obser-
vations amount to mere measurement, while others can include the discovery of
qualitatively novel effects; the custom of referring to MD simulation as computer
experimentation is most certainly justified.

Computer programs are an important part of any MD project and feature promi-
nently among the recipes. The view that programs are best kept out of sight along
with the plumbing is seriously outdated, and program listings are integrated into
the text, with the same status as mathematical equations. After all, a computer pro-
gram is merely the statement of an algorithm (supplemented by a myriad details
to assist the computer in performing its task), and an algorithm is a mathematical
procedure. Without the details of the programs, the recipe oriented goal would not
have been met: there are many vital, but often subtle, details that only emerge when
the program is actually written, so that the program text is an essential part of any
recipe and is meant to be read.

Given the near ubiquity of MD, the choice of material had to be restricted to
avoid a volume of encyclopedic size. The focus is on the simplest of models, since
these form the basis of almost all later developments. Even what constitutes a sim-
ple model is open to debate, and here a modest bias on the part of the (physicist)
author may be discerned. The emphasis is on showing that MD can reproduce
known physical phenomena at a qualitative and semiquantitative level, but with-
out fine-tuning potential functions, molecular structures, or other parameters, for
precise quantitative agreement with experiment. Exercises such as demonstrating
the solid—fluid phase transition in a system of soft-disk atoms, observing the local
ordering in a simple model for water, and following the gyrations of a highly ide-
alized polymer chain, are all far more rewarding experiences for the beginner than
detailed computations of specific heats or viscosities across the entire state space
of the system. Quantitative detail is not neglected, however, although here some
aspects will obviously appeal to more limited segments of the audience.

The model systems to be introduced in these pages can be readily extended and
adapted to problems of current interest; suggestions for further work of this kind
accompany the case studies, and can serve as exercises (or even research projects)
in courses devoted to simulation. The same holds true for the computational tech-
niques. We cover a variety of methods, but not all combinations of methods and
problems. In some cases all that is required is a simple modification or combina-
tion of the material covered, but in other cases more extensive efforts are called
for — the literature continues to report such methodological developments. While
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MD can hardly be regarded as a new technique, neither can it be regarded as a fully
matured method, and thus there are often several ways of approaching a particular
problem, with little agreement on which is to be preferred. It is not our intent to
pass judgment, and examples based on alternative methods are included.

The practical side of MD is no less important than the theoretical. A true appreci-
ation of the capabilities and shortcomings of the various methods, an understanding
of the assumptions used in the models, and a feeling for what kinds of problem are
realistic candidates for MD treatment can only be obtained from experience. This
is something that even users of commercial and other packaged software should be
aware of. The bottom line is that the reader should be prepared to use this book like
any other recipe book: off to the kitchen and start cooking!

January, 1995 Dennis C. Rapaport



Preface to the second edition

The second edition of The Art of Molecular Dynamics Simulation is an enlarged
and updated version of the first. The principal differences between the two editions
are the inclusion of a substantial amount of new material, both as additional chap-
ters and within existing chapters, and a complete revision of all the software used in
the case studies to reflect a more modern programming style. This style change is a
consequence of the population shift in the research community. At the time the first
edition was written older versions of the Fortran language were still in widespread
use; despite this fact, C was chosen as the programming language for the book
in preference to Fortran, but in a form that would appear familiar to Fortran pro-
grammers of the era. Now that C — and related languages — are in widespread use,
and Fortran has even evolved to become more like C, the expressive capabilities
of C can be employed to the full, resulting in software that is easier to follow. The
power of desktop computers has also increased by a large factor since the case
studies of the first edition were developed; in recognition of this fact some of the
studies consider larger systems, reflecting a shifting view of what is considered a
‘short’ computation. Other minor changes and corrections have been incorporated
throughout the text. The exhortation to employ this volume as a cookbook remains
unchanged.

January, 2003 D.CR.
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About the software

Software availability

Readers interested in downloading the software described in this book in a
computer-readable form for personal, noncommercial use should visit the Cam-
bridge University Press web site at http://uk.cambridge. org, where the home
page for this book and the software can be found; a listing of the programs included
in the software package appears in the Appendix. Additional material related to
the book, as well as contact information, can be found at the author’s website —
http://www.ph.biu.ac.il/ rapaport.

Legal matters

The programs appearing in this book are provided for educational purposes only.
Neither the author nor the publisher warrants that these programs are free from
error or suitable for particular applications, and both disclaim all liability from any
consequences arising out of their use.

xiii
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Introduction

O

1.1 Historical background

The origins of molecular dynamics — MD — are rooted in the atomism of antiquity.

he ingredients, while of more recent vintage, are not exactly new. The theoreti-
cal underpinnings amount to little more than Newton’s laws of motion. The sig-
nificance of the solution to the many-body problem was appreciated by Laplace
[del51]: ‘Given for one instant an intelligence which could comprehend all the
forces by which nature is animated and the respective situation of the beings who
compose it — an intelligence sufficiently vast to submit these data to analysis — it
would embrace in the same formula the movements of the greatest bodies of the
universe and those of the lightest atom; for it, nothing would be uncertain and the
future, as the past, would be present to its eyes’. And the concept of the computer,
without which there would be no MD, dates back at least as far as Babbage, even
though the more spectacular hardware developments continue to this day. Thus
MD is a methodology whose appearance was a foregone conclusion, and indeed
not many years passed after digital computers first appeared before the first cau-
tious MD steps were taken [ald57, gib60, rah64].

The N-body problem originated in the dynamics of the solar system, and the
general problem turns out to be insoluble for three or more bodies. Once the atomic
nature of matter became firmly established, quantum mechanics took charge of the
microscopic world, and the situation became even more complicated because even
the constituent particles seemed endowed with a rather ill-defined existence. But
a great deal of the behavior of matter in its various states can still be understood
in classical (meaning nonquantum) terms, and so it is that the classical N-body
problem is also central to understanding matter at the microscopic level. And it is
the task of the numerical solution of this problem that MD addresses.

For systems in thermal equilibrium, theory, in the form of statistical mechanics,
has met with a considerable measure of success, particularly from the conceptual
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2 1 Introduction @ Il

point of view. Statistical mechanics provides a formal description — based on the
partition function — of a system in equilibrium; however, with a few notable ex-
ceptions, there are no quantitative answers unless severe approximations are intro-
duced, and even then it is necessary to assume large (essentially infinite) systems.
Once out of equilibrium, theory has very little to say. Simulations of various kinds,
including MD, help fill the gaps on the equilibrium side, but in the more general
case it is only by means of simulation — principally MD — that progress is possible.
|; Jrom the outset, the role of computers in scientific research has been a central
ne, both in experiment and in theory. For the theoretician, the computer has pro-
vided a new paradigm of understanding. Rather than attempting to obtain simplified
closed-form expressions that describe behavior by resorting to (often uncontrolled)
approximation, the computer is now able to examine the original system directly.
While there are no analytic formulae to summarize the results neatly, all aspects of
the behavior are open for inspection.

1.2 Computer simulation

Science requires both observation and comprehension. Without observation there
are no facts to be comprehended; without comprehension science is mere docu-
mentation. The basis for comprehension is theory, and the language of theoretical
science is mathematics. Theory is constructed on a foundation of hypothesis; the
fewer the hypotheses needed to explain existing observations and predict new phe-
nomena, the more ‘elegant’ the theory — Occam’s razor.

The question arises as to how simulation is related to%)]/sical theory. Univer-
sity education abounds with elegant theoretical manipulation and is a repository
for highly idealized problems that are amenable to closed-form solution. Despite
the almost ‘unreasonable applicability’ of mathematics in science [wig60], the fact
is that there is usually a chasm between the statement of a theory and the abil-
ity to extract quantitative information useful in interpreting experiment. In the real
world, exact solutions are the notable exception. Theory therefore relies heavily on
approximation, both analytical and numerical, but this is often uncontrolled and so
reliability may be difficult to establish. Thus it might be said that simulation rests
on the basic theoretical foundations, but tries to avoid much of the approximation
normally associated with theory, replacing it by a more elaborate calculational ef-
fort. Where theory and simulation differ is in regard to cost. Theory requires few
resources beyond the cerebral and is therefore ‘cheap’; simulation needs the hard-

@are and, despite plummeting prices, a computer system for tackling problems at
the forefront of any field can still prove costly.

Simulation also draws from experiment. Experimental practice rests on a long
(occasionally blemished) tradition; computer simulation, because of its novelty,


Administrator
线条

Administrator
附注
=From the beginning

Administrator
附注
假设最少原理，又称“奥卡姆剃须刀原理”。

Administrator
线条

Administrator
附注
-very complicated and detailed

Administrator
线条

Administrator
附注
-暴跌的


1.2 Computer simulation @ i

is still somewhat more hapha@, but methodologies are gradually evolving. The
output of any simulation should be treated by the same statistical methods used in
the analysis of experiments. In addition to estimating the reliability of the results
(on the assumption that the measurements have been made correctly) there is also
the issue of adequate sampling. This is particularly important when attempting to
observe ‘rare’ events: quantitative studies of such events require that the entire oc-
currence be reproduced as many times as necessary to assure adequate sampling —
if computer resources cannot accommodate this requirement it is presumptuous to
expect reliable results.

What distinguishes computer simulation in general from other forms of compu-
tation, if such a distinction can be made, is the manner in which the computer is
used: instead of merely performing a calculation, the computer becomes the virtual
laboratory in which a system is studied — a numerical experiment. The analogy can

be carried even further; the results emerging from a simulation may be entirely un-
expected, in that they may not be at all apparent from the original formulation of the
model. A wide variety of modeling techniques have been developed over the years,
and those relevant for work at the molecular level include, in addition to MD, clas-
sical Monte Carlo [all87, 1an00], quantum based techniques involving path-integral
[ber86¢, gil90] and Monte Carlo methods [sch92], and MD combined with elec-
tron density-function theory [rem90, tuc94], as well as discrete approaches such as
—vyellular automata and the lattice—Boltzmann method [doo91].
77— Although the goal of science is understanding, it is not always obvious what
constitutes ‘understanding’. In the simulational context, understanding is achieved
nce a plausible model is able to reproduce and predict experimental observation.
EEubsequent study may lead to improvements in the model, or to its replacement, in
order to explain further experiments, but this is no different from the way in which

science is practiced in the broader context. Clearly, there is no inherent virtue in
an excessively complex model if there is no way of establishing that all its features
are essential for the desired results (Occam again). The practical consequence of
this policy is that, despite any temptation to do otherwise, features should be added
gradually. This helps with quality control in the notoriously treacherous world of
computer programming; since the outcome of a simulation often cannot be pre-
dicted with enough confidence to allow full validation of the computation, the in-
cremental approach becomes a practical necessity.

Simulation plays an important role in education. It takes little imagination to
see how interactive computer demonstrations of natural phenomena can enrich any
scientific presentation. Whether as an adjunct to experiment, a means of enhanc-
ing theoretical discussion, or a tool for creating hypothetical worlds, simulation
is without peer. Especially in a conceptually difficult field such as physics, sim-
ulation can be used to help overcome some of the more counterintuitive concepts
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4 1 Introduction ooy

encountered even at a relatively elementary level. As to the role of MD, it can bring
to life the entire invisible universe of the atom, an experience no less rewarding for
the experienced scientist than for the utter tyro. But, as with education in general,
simulation must be kept honest, because seeing is believing, and animated displays
can be very convincing irrespective of their veracity. @

1.3 Molecular dynamics

Foundations

The theoretical basis for MD embodies many of the important results produced
by the great names of analytical mechanics — Euler, Hamilton, Lagrange, Newton.
Their contributions are now to be found in introductory mechanics texts (such as
[gol80]). Some of these results contain fundamental observations about the appar-
ent workings of nature; others are elegant reformulations that spawn further theo-
retical development. The simplest form of MD, that of structureless particles, in-
volves little more than Newton’s second law. Rigid molecules require the use of the
Euler equations, perhaps expressed in terms of Hamilton’s quaternions. Molecules
with internal degrees of freedom, but that are also subject to structural constraints,
might involve the Lagrange method for incorporating geometric constraints into
the dynamical equations. Normal equilibrium MD corresponds to the microcanon-
ical ensemble of statistical mechanics, but in certain cases properties at constant
temperature (and sometimes pressure) are required; there are ways of modifying
the equations of motion to produce such systems, but of course the individual tra-
jectories no longer represent the solution of Newton’s equations.
The equations of motion can only be solved numerically. Because of the nature
@f the interatomic interaction, exemplified by the Lennard-Jones potential with a
strongly repulsive core, atomic trajectories are unstable in the sense that an in-
finitesimal perturbation will grow at an exponential rate’, and it is fruitless to
seek more than moderate accuracy in the trajectories, even over limited periods of
time. Thus a comparatively low-order numerical integration method often suffices;
whether or not this is adequate emerges from the results, but the reproducibility of
MD measurements speaks for itself. Where softer interactions are involved, such
as harmonic springs or torsional interactions, either or both of which are often used
for modeling molecules with internal degrees of freedom, a higher-order integrator,
as well as a smaller timestep than before, may be more appropriate to accommo-

date the fast internal motion. The numerical treatment of constraints introduces an
additional consideration, namely that the constraints themselves must be preserved
to much higher accuracy than is provided by the integration method, and methods

T This is discussed in §3.8.
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1.3 Molecular dynamics oo

exist that address this problem. All these issues, and more, are covered in later
chapters.

While MD is utterly dependent on the now ubiq s computer, an invention
of the twentieth century, it pays little heed to the two greatest developments that
occurred in physics in the very same century — relativity and quantum mechan-
ics. Special relativity proscribes information transfer at speeds greater than that

of light; MD simulation assumes forces whose nature implies an infinite speed
of propagation. Quantum mechanics has at its base the uncertainty principle; MD
requires — and provides — complete information about position and momentum at
all times. In practice, the phenomena studied by MD simulation are those where
relativistic effects are not observed and quantum effects can, if necessary, be in-

rporated as semiclassical corrections — quantum theory shows how this should

e done [mai81]. But, strictly speaking, MD deals with a world that, while intu- @

itively appealing to late nineteenth-century science, not to mention antiquity, has
little concern for anything that is ‘nonclassical’. This fact has in no way diminished
the power and effectiveness of the method.

Relation to statistical mechanics

Statistical mechanics (for example [mcq76]) deals with ensemble@rages. For the

@anonical ensemble, in which the temperature 7 and number of particles N,, are
fixed, the equilibrium average of some quantity G is expressed in terms of phase-
space integrals involving the potential energy U (ry, ... ry,,),

/ G(rl, . er)e*ﬂU(rlv“'er) drl .. er
G) - (1.3.1)
/e—ﬁUm,...er) dri---ry,

where {r;|i =1, ... N,} are the coordinates, 8 = 1/kgT, and kg is the Boltzmann
constant. This average corresponds to a series of measurements over an ensemble
of independent systems.

The ergodic hypothesil;z_ltes the ensemble average to measurements carried
out for a single equilibrium system during the course of its natural evolution —
both kinds of measurement should produce the same result. Molecular dynamics

simulation follows the dynamics of a single system and produces averages of the
form

1 M
(G) =2 Gulr....rw,) (13.2)

n=1

over a series of M measurements made as the system evolves. Assuming that the
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6 1 Introduction @ il

sampling is sufficiently thorough to capture the typical behavior, the two kinds of
averaging will be identical. The observation that MD corresponds to the micro-
canonical (constant energy) ensemble, rather than to the canonical (constant tem-
perature) ensemble, will be addressed when it appears likely to cause problems.

Relation to other classical simulation methods

The basic Monte Carlo method [1an00] begins by replacing the phase-space inte-
grals in (1.3.1) by sums over states

Z G(S)e—ﬁU(S)

s
—BU(s)
2

Then, by a judiciou@ighﬁng of the states included in the sum, which for the
general case results in

Z W(s)"'G(s)e PV®

Z W(S)—le—ﬁU(s)

(G) = (1.3.3)

(G) = (1.3.4)

where W (s) is the probability with which states are chosen, (1.3.4) can be reduced
to a simple average over the S states examined, namely,

1 S
(G) = EZG(S) (1.3.5)
s=1

Clearly, we require
W(s) =e VO (1.3.6)

for this to be true, and much of the art of Monte Carlo is to ensure that states are ac-
tually produced with this probability; the approach is called importance sampling.

The Monte Carlo method considers only configuration space, having eliminated the
momentum part of phase space. Since there are no dynamics, it can only be used
to study systems in equilibrium, although if dynamical processes are represented
in terms of collision cross sections it becomes possible to study the consequences
of the process, even if not the detailed dynamics [bir94].

Molecular dynamics operates in the continuum, in contrast to lattice-based meth-
ods [doo91], such as cellular automata, which are spatially discrete. While the lat-
ter are very effective from a computational point of view, they suffer from certain
design problems such as the lack of a range of particle velocities, or unwanted ef-
fects due to lattice symmetry, and are also not easily extended. The MD approach
is computationally demanding, but since it attempts to mimic nature it has few @
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1.3 Molecular dynamics oo

inherent limitations. One further continuum-dynamical method, known as Brown-
ian dynamics [erm80], is based on the Langevin equation; the forces are no longer
computed explicitly but are replaced by stochastic quantities that reflect the fluctu-
ating local environment experienced by the molecules.

Applications and achievements

Given the modeling capability of MD and the variety of techniques that have
emerged, what kinds of problem can be studied? Certain applications can be elim-
inated owing to the classical nature of MD. There are also hardware imposed lim-
itations on the amount of computation that can be performed over a given period

of time — be it an hour or a month — thus restricting the number of molecules of

a given complexity that can be handled, as well as storage limitations having sim-

ilar consequences (to some extent, the passage of time helps alleviate hardware@
restrictions).

The phenomena that can be explored must occur on length and time scales that
are encompassed by the computation. Some classes of phenomena may require re-
peated runs based on different sets of initial conditions to sample adequately the
kinds of behavior that can develop, adding to the computational demands. Small
system size enhances the fluctuations and sets a limit on the measurement accu-
racy; finite-size effects — even the shape of the simulation region — can also influ-
ence certain results. Rare events present additional problems of observation and
measurement.

Liquids represent the state of matter most frequently studied by MD methods.
This is due to historical reasons, since both solids and gases have well-developed
theoretical foundations, but there is no general theory of liquids. For solids, theory
begins by assuming that the atomic constituents undergo small oscillations about
fixed lattice positions; for gases, independent atoms are assumed and interactions
are introduced as weak perturbations. In the case of liquids, however, the inter-
actions are as important as in the solid state, but there is no underlying ordered
structure to begin with.

The following list includes a somewhat random and far from complete assort-
ment of ways in which MD simulation is used:

» Fundamental studies: equilibration, tests of molecular chaos, kinetic theory,
diffusion, transport properties, size dependence, tests of models and potential
functions.

« Phase transitions: first- and second-order, phase coexistence, order parameters,
critical phenomena.

Collective behavior: decay of space and time correlation functions, coupling
of translational and rotational motion, vibration, spectroscopic measurements,

@ orientational order, dielectric properties. |spectroscope:D 00
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8 1 Introduction @ il

« Complex fluids: structure and dynamics of glasses, molecular liquids, pure wa-
ter and aqueous solutions, liquid crystals, ionic liquids, fluid interfaces, films @
and monolayers. -

« Polymers: chains,%s and branched molecules, equilibrium conformation,
relaxation and transport processes.

« Solids: defect formation and migration, fracture, grain boundaries, structural
transformations, radiation damage, elastic and plastic mechanical properties,
friction, shock waves, molecular crystals, epitaxial growth.

« Biomolecules: structure and dynamics of proteins, protein folding, micelles,
membranes, docking of molecules.

@ Fluid dynamics: laminar flow, boundary layers, rheolc%] of non-Newtonian
fluids, unstable flow. -
And there is much more.

The elements involved in an MD study, the way the problem is formulated, and
the relation to the real world can be used to classify MD problems into various cat-
egories. Examples of this classification include whether the interactions are short-
or long-ranged; whether the system is thermally and mechanically isolated or open
to outside influence; whether, if in equilibrium, normal dynamical laws are used or
the equations of motion are modified to produce a particular statistical mechanical
ensemble; whether the constituent particles are simple structureless atoms or more
complex molecules and, if the latter, whether the molecules are rigid or flexible;
whether simple interactions are represented by continuous potential functions or by
step potentials; whether interactions involve just pairs of particles or multiparticle
contributions as well; and so on and so on.

Despite the successes, many challenges remain. Multiple phases introduce the
issue of interfaces that often have a thickness comparable to the typical simulated
region size. Inhomogeneities such as density or temperature gradients can be diffi-
cult to maintain in small systems, given the magnitude of the inherent fluctuations.
Slow relaxation processes, such as those typical of the glassy state, diffusion that
is hindered by structure as in polymer melts, and the very gradual appearance of
spontaneously forming spatial organization, are all examples of problems involv-
ing temporal scales many orders of magnitude larger than those associated with the
underlying molecular motion.

1.4 Organization

Case studies

Case studies are used throughout. The typical case study begins with a review of
the theoretical background used for formulating the computational approach. The
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1.4 Organization @ i

computation is then described, either by means of a complete listing of the func-
tions that make up the program, or as a series of additions and modifications to an
earlier program. Essential but often neglected details such as the initial conditions,
organization of the input and output, accuracy, convergence and efficiency are also
addressed.

Results obtained from running each program are shown. These sometimes repro-
duce published results, although no particular effort is made to achieve a similar
level of accuracy since our goal is one of demonstration, not of compiling a collec-
tion of definitive measurements. Suggested extensions and assorted other projects
are included as exercises for the reader.

We begin with the simplest possible example, to demonstrate that MD actually
works. Later chapters extend the basic model in a variety of directions, improve
the computational methods, deal with various kinds of measurement and introduce
new models for more complex problems. The programs themselves are constructed
incrementally, with most case studies building on programs introduced earlier. In
order to avoid a combinatorial explosion, the directions explored in each chapter
tend to be relatively independent, but in more ambitious MD applications it is quite
likely that combinations of the various techniques will be needed. Some care is
necessary here, because what appears obvious and trivial for simple atoms may,
for example, require particular attention for molecules subject to constraints — each
case must be treated individually.

Itinerary

Chapter 2 introduces the MD approach using the simplest possible example, and
demonstrates how the system behaves in practice; general issues of programming
style and organization that are used throughout the book are also introduced here.
In Chapter 3 we discuss the methodology for simulating monatomic systems, the
algorithms used, and the considerations involved in efficient and accurate computa-
tion. Chapter 4 focuses on measuring the thermodynamic and structural properties
of systems in equilibrium; some of these properties correspond to what can be
measured in the laboratory, while others provide a microscopic perspective unique
to simulation. The dynamical properties of equilibrium systems are the subject of
Chapter 5, including transport coefficients and the correlation functions that are
associated with space- and time-dependent processes.

More complex systems and environments form the subject of subsequent chap-
ters. Modifications of the dynamics to allow systems to be studied under conditions
of constant temperature and pressure, as opposed to the constant energy and vol-
ume implicit in the basic MD approach, are covered in Chapter 6. In Chapter 7 we
discuss further methods for measuring transport properties, both by modeling the
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relevant process directly and by using a modified form of the dynamics designed
for systems not in thermal equilibrium. The dynamics of rigid molecules forms
the subject of Chapter 8; methods for handling the general problem are described
and a model for water is treated in some detail. Flexible molecules are discussed
in Chapter 9 and a model for surfactants examined. Molecules possessing internal
degrees of freedom, but also subject to geometric constraints that provide a cer-
tain amount of rigidity, are analyzed in Chapter 10, together with a model used for
simulating alkane chains. An alternative route to dealing with molecules having
internal degrees of freedom, based on treating the internal coordinates directly, is
described in Chapter 11. Approaches used for three-body and many-body inter-
actions are introduced in Chapter 12. Specialized methods for treating long-range
forces involving Ewald sums and multipole expansions are discussed in Chapter 13.

Chapter 14 describes an alternative approach to MD based on step potentials,
rather than on the continuous potentials of earlier chapters; this calls for entirely
different computational techniques. In Chapter 15 we focus on the study of time-
dependent behavior and demonstrate the ability of MD to reproduce phenomena
normally associated with macroscopic hydrodynamics. The methods developed for
MD can also be applied to studying the dynamics of granular materials; a short in-
troduction to this subject appears in Chapter 16. The special considerations that are
involved in implementing MD computations on parallel and vector supercomputers
form the subject of Chapter 17. Chapter 18 deals with a range of software topics
not covered by the case studies. And, finally, some closing thoughts on where MD
may be headed appear in Chapter 19. A concise alphabetical summary of the vari-
ables used in the software and a list of the programs that are available for use with
the book appear in the Appendix.

1.5 Further reading

A great deal of information about MD methodology and applications is scattered
throughout the scientific literature, and references to material relevant to the sub-
jects covered here will appear in the appropriate places. Three volumes of con-
ference proceedings include pedagogical expositions of various aspects of MD
simulation [cic86a, cat90, all93b] and a monograph on liquid simulation covers
both MD and Monte Carlo techniques [all87]. Another book devoted in part to
MD is [hoo91]. Three evenly spaced reviews of the role of simulation in statistical
mechanics are [bee66, woo76, abr86]. Two extensive literature surveys on liquid
simulation [lev84, lev92] and a collection of reprints [cic87] are also available.
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Basic molecular dynamics

2.1 Introduction

This chapter provides the introductory appetizer and aims to leave the reader new @

to MD with a feeling for what the subject is all about. Later chapters will address
the techniques in detail; here the goal is to demonstrate a working example with
a minimum of fuss and so convince the beginner that MD is not only straightfor-
ward but also that it works successfully. Of course, the technique for evaluating
the forces discussed here is not particularly efficient from a computational point
of view and the model is about the simplest there is. Such matters will be recti-
fied later. The general program organization and stylistic conventions used in case
studies throughout the book are also introduced.

2.2 Soft-disk fluid

Interactions and equations of motion

The most rudimentary microscopic model for a substance capable of existing in
any of the three most familiar states of matter — solid, liquid and gas — is based
on spherical particles that interact with one another; in the interest of brevity such
particles will be referred to as atoms (albeit without hint of their quantum origins).
The interactions, again at the simplest level, occur between pairs of atoms and are
responsible for providing the two principal features of an interatomic force. The
first is a resistance to compression, hence the interaction repels at close range. The

second is to bind the atoms together in the solid and liquid states, and for this
the atoms must attract each other over a range of separations. Potential functions
exhibiting these characteristics can adopt a variety of forms and, when chosen care-
fully, actually provide useful models for real substances.

The best known of these potentials, originally proposed for liquid argon, is the
Lennard-Jones (LJ) potential [mcq76, mai81]; for a pair of atoms i and j located

11
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12 2 Basic molecular dynamics T

at r; and r; the potential energy is

|: o 12 o 6
EREI
u(ry) = Tij rij (2.2.1)

0 rij =T

where r;; = r; — r; and r;; = |r;;|. The parameter € governs the strength of the
interaction and o defines a length scale; the interaction repels at close range, then
attracts, and is eventually cut off at some limiting separation r.. While the strongly
repulsive core arising from (in the language of quantum mechanics) the nonbonded
@meen the electron clouds has a rather arbitrary form, and other powers
and functional forms are sometimes used, thegttractive tail)actually represents the ’>
van der Waals interaction due to electron correlations. The interactions involve
individual pairs of atoms: each pair is treated independently, with other atoms in
the neighborhood having no effect on the force between them.
We will simplify the interaction even further by ignoring the attractive tail and
changing (2.2.1) to

de (i)lz - (£>6 + € rii <r.=2Y%¢
u(rij) = rij rij vomrer (2.2.2)

0 Tij = Te¢

with r, chosen so that u#(r.) = 0. A model fluid constructed using this potential is
@ittle more than a collection of colliding balls that are both soft (though the softness
1s limited) and smooth. All that holds the system together is the container within
which the atoms (or balls) are confined. While the kinds of system that can be
represented quantitatively by this highly simplified model are limited — typically
gases at low density — it does nevertheless have much in common with more de-
tailed models, and has a clear advantage in terms of computational simplicity. If
certain kinds of behavior can be shown to be insensitive to specific features of the
model, in this instance the attractive tail of the potential, then it is clearly prefer-
able to eliminate them from the computation in order to reduce the amount of
work, and for this reason the soft-sphere system will reappear in many of the case
studies.
The force corresponding to u(r) is

f=—Vu@) (2.2.3)

so the force that atom j exer;n atom i is

48¢ o\ " o\
7=(%) [(a) - (‘)} =29

=
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2.2 Soft-disk fluid @

provided r;; < r., and zero otherwise. As r increases towards r. the force drops
to zero, so that there is no discontinuity at . (in both the force and the potential);
V f and higher derivatives are discontinuous, though this has no real impact on
the numerical solution. The equations of motion follow from Newton’s second law,

N
—
(jjaéi)

where the sum is over all N,, atoms (or molecules in the monatomic case), ex-
cluding i itself, and m is the atomic mass. It is these equations which must be
numerically integrated. Newton’s third law implies that f;; = — fi;, so each atom
pair need only be examined once. The amount of work" is proportional to N2, so
that for models in which r, is small compared with the size of the container it would
obviously be a good idea to determine those atom pairs for which r;; < r. and use
this information to reduce the computational effort; we will indeed adopt such an
approach in Chapter 3. In the present example, which focuses on just the smallest
of systems, we continue with this all-pairs approach.

Dimensionless units

At this point we introduce a set of dimensionless, or reduced, MD units in terms of
which all physical quantities will be expressed. There are several reasons for doing
this, not the least being the ability to work with numerical values that are not too

distant from unity, instead of the extremely small values normally associated with
the atomic scale. Another benefit of dimensionless units is that the equations of
motion are simplified because some, if not all, of the parameters defining the model

are absorbed into the units. The most familiar reason for using such units is related
to the general notion of scaling, namely, that a single model can describe a whole
class of problems, and once the properties have been measured in dimensionless
units they can easily be scaled to the appropriate physical units for each problem
of interest. From a strictly practical point of view, the switch to such units removes
any risk of encountering values lying outside the range that is representable by the
computer hardware.

For MD studies using potentials based on the LJ form (2.2.1) the most suitable
dimensionless units are defined by choosing o, m and € to be the units of length,

F Note that for the potential function (2.2.2), or the corresponding force (2.2.4), it is never necessary to evaluate
|rjj|; only its square is needed, so that the (sometimes costly) square root computation is avoided.
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Fig. 2.1. Lennard-Jones and soft-sphere interaction energy (in dimensionless MD units).

mass and energy, respectively, and making the replacements

length: r — ro
energy: e — e€ (2.2.6)

time: t — tymo?/e

The resulting form of the equation of motion, now in MD units, is

7 — 48 Z (ri;m _ %ri;8> ri; (2.2.7)
J(F#i)

The dimensionless kinetic and potential energies, per atom, are

(2.2.8)

) (2.2.9)

=

m

I<i<j=<Npm

where v; is the velocity. The functional forms of the LJ and soft-sphere potentials,
in MD units, are shown in Figure 2.1.

The unit of temperature is €/ kg, and since each translational degree of freedom
contributes kg T /2 to the kinetic energy, the temperature of a d-dimensional (d = 2
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2.2 Soft-disk fluid @

or 3) system is

1 2
T = i Xi:vi (2.2.10)
We have set kg = 1, so that the MD unit of temperature is now also defined.

Strictly speaking, of the total dN,, degrees of freedom, d are eliminated because

of momentum conservation, but if N,, is not too small this detail can be safely
ignored.

If the model is intended to represent liquid argon, the relations between the di-
mensionless MD units and real physical units are as follows [rah64]:

« Lengths are expressed in terms of 0 = 3.4 A.

o The energy units are specified by €/kp = 120K, implying that ¢ = 120 x
1.3806 x 10*16erg/at0m*.

« Given the mass of an argon atom m = 39.95 x 1.6747 x 10~>* g, the MD time
unit corresponds to 2.161 x 10~'2 s; thus a typical timestep size of At = 0.005
used in the numerical integration of the equations of motion corresponds to
approximately 10~ !4,

« Finally, if N,, atoms occupy a cubic region of edge length L, then a typical
liquid density of 0.942 g/cm® implies that L = 4.142N,;> A, which in reduced
units amounts to L = 1.218N,,l/3.

Suitably chosen dimensionless units will be employed throughout the book. Other
quantities, such as the diffusion coefficient and viscosity studied in Chapter 5, will
also be expressed using dimensionless units, and these too are readily converted to
physical units.

Boundary conditions

Finite and infinite systems are very different, and the question of how large a rel-
atively small system must be to yield results that resemble the behavior of the
infinite system faithfully lacks a unique answer. The simulation takes place in a
container of some kind, and it is tempting to regard the container walls as rigid
boundaries against which atoms collide while trying to escape from the simulation
region. In systems of macroscopic size, only a very small fraction of the atoms is
close enough to a wall to experience any deviation from the environment prevailing
in the interior. Consider, for example, a three-dimensional system with N,, = 10?!
at liquid density. Since the number of atoms near the walls is of order N, this
amounts to 10'* atoms — a mere one in 107. But for a more typical MD value of

T Several kinds of units are in use for energy; conversion among them is based on standard relations that include
1.3806 x 10710 erg/atom = 1.987 x 1073 keal/mole = 8.314 J/mole.
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Fig. 2.2. The meaning of periodic boundary conditions (the two-dimensional case is
shown).

N,, = 1000, roughly 500 atoms are immediately adjacent to the walls, leaving very
few interior atoms; if the first two layers are excluded a mere 216 atoms remain.
Thus the simulation will fail to capture the typical state of an interior atom and the
measurements will reflect this fact. Unless the goal is the study of behavior near
real walls, a problem that is actually of considerable importance, walls are best
eliminated.

A system that is bounded but free of physical walls can be constructed by resort-
ing to periodic boundary conditions, shown schematically in Figure 2.2. The intro-
duction of periodic boundaries is equivalent to considering an infinite, space-filling
array of identical copies of the simulation region. There are two consequences of
this periodicity. The first is that an atom that leaves the simulation region through
a particular bounding face immediately reenters the region through the opposite@
face. The second is that atoms lying within a distance r. of a boundary interact
with atoms in an adjacent copy of the system, or, equivalently, with atoms near
the opposite boundary — a wraparound effect. Another way of regarding periodic @
boundaries is to think of mapping the region (topologically, not spatially) onto the
equivalent of a torus in four dimensions (a two-dimensional system is mapped onto
a torus); then it is obvious that there are no physical boundaries. In this way it is
possible to model systems that are effectively bounded but that are nevertheless
spatially homogeneous insofar as boundaries are concerned. %}

The wraparound effect of the periodic boundaries must be tdken into account in
both the integration of the equations of motion and the interaction computations.
After each integration step the coordinates must be examined, and if an atom is
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2.2 Soft-disk fluid @y

found to have moved outside the region its coordinates must be adjusted to bring
it back inside. If, for example, the x coordinate is defined to lie between —L, /2
and L,/2, where L, is the region size in the x direction, the tests (which can be
expressed-1n various eg alent wa are.:
o ifr;, > L,/2,replaceitbyr;, — L;

otherwise, if r;, < —L, /2, replace it b
The effect of periodicity omrtheTmeraction calculation appears in determining the

components of the distance between pairs of atoms; the tests are very similar:

o ifr;jx > L,/2, replace it by r;j . — L,;

« otherwise, if r;;, < —L./2, replace itby r;;, + L.
Periodic wraparound may also have to be considered when analyzing the results of
a simulation, as will become apparent later.

Periodic boundaries are most easily handled if the region is rectangular in two
dimensions, or a rectangular prism in three. This is not an essential requirement,

and any space-filling, convex region can be used, although the boundary compu-

tations will not be as simple as those just illustrated. The motivation for choosing
alternative region shapes is to enlarge the volume to surface ratio, and thus increase
the maximum distance between atoms before periodic ambiguity appears (it is ob- @
viously meaningless to speak of interatomic distances that exceed half the region
size), the most desirable shape in three dimensions — though not space filling —
being the sphere. In two dimensions a hexagon might be used, while in three the @
truncated octahedron [ada80] is one such candidate. Another reason for choosing

@

more complex region shapes is to allow the modeling of crystalline structures with

@Eonorthogonal axes, for example, a trigonal unit cell; there, too, an alternative re-

gion shape, such as a sheared cube, might be worth considering.

Although not an issue in this particular case, the use of periodic boundaries
limits the interaction range to no more than half the smallest region dimension —
in practice the range is generally much less. Long-range forces require entirely
different approaches that will be described in Chapter 13. Problems can also arise
if there are strong correlations between atoms separated by distances approaching
the region size, because periodic wraparound can then lead to spurious effects. One @
example is the vibration of an atom producing what are essentially sound waves;
the disturbance, if not sufficiently attenuated, can propagate around the system and
eventually return to affect the atom itself.

Even with periodic boundaries, finite-size effects are still present, so how big
does the system have to be before they can be neglected? The answer depends on
the kind of system and the properties of interest. As a minimal requirement, the
size should exceed the range of any significant correlations, but there may be more
subtle effects even in larger systems. Only detailed numerical study can hope to
resolve this question.
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18 2 Basic molecular dynamics @

Initial state

In order for MD to serve a useful purpose it must be capable of sampling a repre-
sentative region of the total phase space of the system. An obvious corollary of this
requirement is that the results of a simulation of adequate duration are insensitive to
the initial state, so that any convenient initial state is allowed. A particularly simple
choice is to start with the atoms at the sites of a regular lattice — such as the square
or simple cubic lattice — spaced to give the desired density. The initial velocities
are assigned random directions and a fixed magnitude based on temperature; they
are also adjusted to ensure that the center of mass of the system is at rest, thereby
eliminating any overall flow. The speed of equilibration to a state in which there is
no memory of this arbitrarily selected initial configuration is normally quite rapid,
so that more careful attempts at constructing a ‘typical’ state are of little benefit.

2.3 Methodology

Integration

Integration of the equations of motion uses the simplest of numerical techniques,

the leapfrog method. The origin of the method will be discussed in §3.5; for the

@presen‘[ it is sufficient to state that, despite its low order, the method has excellent
energy conservation properties and is widely used.

If h = At denotes the size of the timestep used for the numerical integration,

then the integration formulae applied to each component of an atom’s coordinates

and velocities are

Vix(t+1/2) = v (t — h/2) + ha; (1) (2.3.1)
Fix(t+h) =1 (t) +hvi (t +h/2) (2.3.2)

The name ‘leapfrog’ stems from the fact that coordinates and velocities are evalu-
ated at different times; if a velocity estimate is required to correspond to the time
at which coordinates are evaluated, then

Vi () = vix(t —h/2) + (h/2)a; (1) (\2?/
can be used. The local errors introduced at each timestep due to the truncation of
what should really be infinite series in 4 are of order O (h*) for the coordinates and
O (h?) for velocities.

The leapfrog method can be reformulated in an alternative, algebraically equiva-
lent manner that enables the coordinates and velocities to be evaluated at the same

instant in time, avoiding the need for the velocity adjustment in (2.3.3). To do this,
the computations are split into two parts: Before computing the acceleration values,
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2.3 Methodology oo

update the velocities by a half timestep using the old acceleration values, and then
update the coordinates by a full timestep using the intermediate velocity values,

Vix(t+h/2) = v (t) + (h/2)a; (1) (2.3.4)
Fix(t +h) =ri () +hvi(t +h/2) (2.3.5)

Now use the new coordinates to compute the latest acceleration values and update
the velocities over the second half timestep,

Vi@ +h) =i @+ Nh/2)+ (h/2)a;(t + h) (2.3.6)

This two-step procedure’ is the version of the leapfrog method that will be used
throughout the book.

Measurements

The most accessible properties of systems in equilibrium are those introduced in el-
ementary thermodynamics, namely, energy and pressure, each expressed in terms
of the independent temperature and density variables T and p. Measuring such
quantities during an MD simulation is relatively simple, and provides the link be-
tween the world of thermodynamics — which predates the recognition of the atomic
nature of matter — and the detailed behavior at the microscopic level. However, it
is energy rather than temperature that is constant in our MD simulation, so the
thermodynamic results are expressed in terms of the average (T'), rather than T'.

In this case study, energy and pressure are the only properties measured. Pressure
is defined in terms of the virial expression [han86b] (with kg = 1) @

1)L
PV =N,T + E<Z ri - f,~> (2.3.7)

i=1
In two dimensions, the region volume V is replaced by the area. For pair potentials,
(2.3.7) can be written as a sum over interacting atom pairs, namely,

1
PV =N, T + E<Z rij - ﬁ,> (2.3.8)
i<j
and for the force (2.2.4) this becomes (in MD units)
1 2 -12_1,.-6
PV = 2<Z v +48 Z(rij —1r29) (2.3.9)
i i<j

While the total energy per atom E = E + Ey is conserved, apart from any numer-
ical integration error, quantities such P and T (= 2Eg /d) fluctuate, and averages

T The first edition used the one-step method of (2.3.1)—(2.3.2).
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must be computed over a series of timesteps; such averaging will be included in
the program and used for estimating the mean values as well as the statistical mea-
surement errors.

2.4 Programming

Style and conventions

In this section we will be presenting the full listing of the program used in the case
study. Not only is the program the tool for getting the job done, it also incorporates
a definitive statement of all the computational details. But before addressing these
details a few general remarks on matters of organization and programming style are
in order. Style, to a considerable degree, is a matter of personal taste; the widely
used C language chosen for this work offers a certain amount of flexibility in this
respect*, a boon for some, but a bane for others.

A similar form of organization is used for most programs in the book. Parts of
the program discussed in this chapter may seem to be expressed in a more general
form than is absolutely necessary; this is to provide a basis for extending the pro-
gram to handle later case studies. We assume that the reader has a reasonable (and
easily acquired) familiarity with the C language. C requires that all variables be
defined prior to use; all the definitions will be included, but because the material
is presented in a ‘functional’ manner, rather than as a serial listing of the program
text, variables may first appear in the recipe before they are formally defined (this
is of course not the case in the program sources). Local variables used within func-
tions are not preserved between calls.

We adopt the convention that all variable names begin with a lower case let-
ter; names formed by joining multiple words use intermediate capitals to clarify
meaning. Function names begin with an upper case letter, as do macro definitions
specified using #define statements. Constants specified with #define statements
are fully capitalized. The format of a C program is also subject to taste. The phys-
ical layout used here is fairly standard, with indentation and the positioning of
block-delimiting braces used to emphasize the logical structure. The line numbers
are of course not part of the program, and are included merely to aid reference.

T In the interest of readability, we have tried to avoid some characteristics of C that allow writing extremely
concise code (often bordering on the obfuscated); while the experienced C user may perceive their absence,
the efficiency of the compiled program is unlikely to be affected in any serious way. As some readers may
notice, the software here differs from the first edition in two key respects: (a) Arrays of C structures are used
to represent sets of molecular variables, rather than doubly-indexed arrays that represent individual variables
(such as atomic coordinates) in which one of the indices is used to select the component of the vector. (b) The
conventional C indexing style is used, in which array indices begin at zero, rather than unity as in the original
algebraic formulation of the problem. The programming style of the first edition was aimed at making the
software more acceptable to Fortran programmers; with the increasing popularity of C, and other programming
languages that borrow much of its syntax, not to mention the changing nature of the Fortran language, this is
no longer an issue.
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Program organization

The main program® of this elementary MD exercise, which forms the basis of most
of the subsequent case studies as well, is as follows.

int main (int argc, char **argv)
{
GetNameList (argc, argv);
PrintNameList (stdout);
SetParams (); s
SetupJob ();
moreCycles = 1;
while (moreCycles) {
SingleStep ();
if (stepCount >= stepLimit) moreCycles = 0; 10
}
}

After the initialization phase (GetNameList, SetParams, SetupJob), in the
course of which parameters and other data are input to the program or initial-
ized, and storage arrays allocated, the program enters a loop. Each loop cycle ad-
vances the system by a single timestep (SingleStep). The loop terminates when
moreCycles is set to zero; here this occurs after a preset number of timesteps,
but in a more general context moreCycles can be zeroed once the total process-
ing time exceeds a preset limit, or even by means of an interrupt generated by the
user from outside the program when she feels the run has produced enough results
(there are also more drastic ways of terminating a program)".

The function that handles the processing for a single timestep, including calls to
functions that deal with the force evaluation, integration of the equations of motion,
adjustments required by periodic boundaries, and property measurements, is

void SingleStep ()
{
++ stepCount;
timeNow = stepCount * deltaT;
LeapfrogStep (1); 5
ApplyBoundaryCond () ;
ComputeForces ();
LeapfrogStep (2);
EvalProps ();
AccumProps (1); 10
if (stepCount J, stepAvg == 0) {

o pr_02_1 (This is a reference to one of the programs accompanying the book; the full list appears in the
Appendix.)

T As areminder to lapsed C users, main is where the program begins, argc is the number of arguments passed
to the program from the command line (as in Unix), and the array argv provides access to the text of each of
these arguments.
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AccumProps (2);
PrintSummary (stdout);
AccumProps (0);
} 5
}

All the work needed for initializing the computation is concentrated in the follow-
ing function.

void SetupJob ()
{
AllocArrays ();
stepCount = 0;
InitCoords (); 5
InitVels ();
InitAccels ();
AccumProps (0);
}

Having dealt with the top level functions of the program it is appropriate to in-
sert a few comments on the program structure adopted in these recipes. The order
of presentation of this introductory case study reflects the organization of the pro-
gram: the organization is modular, with separate functions being responsible for
distinct portions of the computation. In this initial case study, given the simplicity
of the problem the emphasis on organization may appear overdone, but, as indi-
cated earlier, our aim is to provide a more general framework that will be utilized
later".

The meaning of most program variables should be apparent from their names,
with the same being true for functions. Where the meanings are not obvious, or
additional remarks are called for, the text will include further details. An alpha-
betically ordered summary of the globally declared variables appears in the Ap-
pendix. Other questions ought to be resolved by examining functions that appear
subsequently.

There are many program elements that are common to MD simulations of var-
ious kinds. Some of these already appear in this initial case study, others will be
introduced later on. Examples include:

« parameter input with completeness and consistency checks;

« runtime array allocation, with array sizes determined by the actual system size;

« initialization of variables;

« the main loop which cycles through the force computations and trajectory inte-
gration, and performs data collection at specified intervals;

« the processing and statistical analysis of various kinds of measurement;

F On the other hand, in order to avoid the risk of tedium, we have not carried this functional decomposition to
the extremes sometimes practiced in professional software development.
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« storage of accumulated results and condensed configurational snapshots for
later analysis;

« run termination based on various criteria;

« provision for checkpointing (or saving) the current computational state of a
long simulation run, both as a safety measure, and to permit the run to be inter-
rupted and continued at some later time.

Computational functions

The function ComputeForces encountered in the listing of SingleStep is respon-
sible for the interaction computations. Before considering the general form of this
function we start with a version suitable for a two-dimensional system in order to
allow the gradual introduction of data structures and other elements that will be
used throughout the book.

This listing differs from conventional C in that a new kind of floating-point vari-
able, real, is introduced. To allow flexibility, real can be set to correspond to
either single or double precision, known respectively in C as float and double.
Single precision saves storage, whereas double precision provides additional ac-
curacy; as for relative computation speed, this depends on the particular processor
hardware, and either precision may be faster, sometimes significantly. Double pre-
cision will be used throughout by including the declaration

typedef double real;

at the beginning of the program.

Many of the quantities involved in the calculations, such as the atomic coordi-
nates, are in fact vectors; the programming style used here will reflect this obser-
vation in order to enhance the readability of the software. With this goal in mind
we introduce the following C structure type to represent a two-dimensional vector
quantity with floating-point components

typedef struct {
real x, y;
} VecR;

Organizing the variables associated with each atom or molecule is simplified by
the introduction of another structure

typedef struct {
VecR r, rv, ra;
} Mol;
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in which r, rv and ra correspond, respectively, to the coordinate, velocity and
acceleration vectors of the atom. An array of such structures will be introduced
later on to represent the state of the system.

The initial version of the function for computing the forces (which are identical
to the accelerations in the MD units defined earlier), as well as the potential energy
uSum, can be written in terms of these vector quantities as

void ComputeForces ()
{
VecR dr;
real fcVal, rr, rrCut, rri, rri3;
int j1, j2, n; 5

rrCut = Sqr (rCut);
for (n = 0; n < nMol; n ++) {
mol[n].ra.x = 0.;

mol[n].ra.y = 0.; 10
}
uSum = O.;
for (j1 = 0; j1 < nMol - 1; j1 ++) {
for (j2 = j1 + 1; j2 < nMol; j2 ++) {
dr.x = mol[j1].r.x - mol[j2].r.x; Is
dr.y = mol[j1].r.y - mol[j2].r.y;
if (dr.x >= 0.5 * region.x) dr.x -= region.x;
else if (dr.x < -0.5 * region.x) dr.x += region.x;
if (dr.y >= 0.5 * region.y) dr.y -= region.y;
else if (dr.y < -0.5 * region.y) dr.y += region.y; 20
rr =dr.x * dr.x + dr.y * dr.y;
if (rr < rrCut) {
rri = 1. / rr;
rri3 = rri * rri * rri;
fcVal = 48. * rri3 * (rri3 - 0.5) * rri; 25
mol[j1].ra.x += fcVal * dr.x;
mol[j1].ra.y += fcVal * dr.y;
mol[j2].ra.x -= fcVal * dr.x;
mol[j2].ra.y -= fcVal * dr.y;
uSum += 4. * rri3 * (rri3 - 1.) + 1.; 30
}
}
}

Periodic boundaries are included by testing whether any of the components of the
interatomic separation vector dr exceed half the system size, and if they do, per-
forming a wraparound operation.

While C does not provide the capability for defining new operations, in partic-
ular operations associated with vector algebra, it does support the use of macro
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definitions that can simplify the code considerably. Definitions of this kind will be
introduced as necessary, and a complete listing appears in §18.2.

The following definitions can be used for vector addition and subtraction (in two
dimensions),

#define VAdd(v1, v2, v3) \
(vl).x = (v2).x + (v3).x, \
(vi).y = (v2).y + (v3).y
#define VSub(vl, v2, v3) \
(v1).x = (v2).x - (v3).x, \ 5

(vl).y = (v2).y - (v3).y

where the extra parentheses are a safety measure to cover the possible ways these
definitions might be employed in practice. Other vector operations that will be used
here, some of which are specialized instances of preceding definitions, are

#define VDot (vl, v2) \
((vi).x * (v2).x + (v1).y * (v2).y)
#define VSAdd(v1l, v2, s3, v3) \
(vl).x = (v2).x + (s3) * (v3).x, \
(vl).y = (v2).y + (s3) * (v3).y 5
#define VSet (v, sx, sy) \
(v).x = sx, \
(v).y = sy
#define VSetAll(v, s) vSet (v, s, s)
#define VZero(v) VSetAll (v, 0) 10
#define VVSAdd(v1, s2, v2) VSAdd (v1, vi1, s2, v2)
#define VLenSq(v) VDot (v, v)

The definitions have been constructed in a manner that will minimize the changes
required when switching to three dimensions — such as defining the scalar product
of two vectors and then using this in defining the squared length of a vector. Finally,
the expressions for handling the periodic wraparound can be defined as

#define VWrap(v, t) \
if (v.t >= 0.5 * region.t) v.t -= region.t; \
else if (v.t < -0.5 * region.t) v.t += region.t
#define VWrapAll(v) \
{VWrap (v, x); \ 5

Virap (v, y);}

Note that it is implicitly assumed that atoms will not have moved too far outside
the region before the periodic wraparound is applied; the above treatment is clearly
inadequate for atoms that have traveled so far that this adjustment does not bring
them back inside the region. In practice, it should be impossible for an atom to
travel such a distance in just a single timestep; thus the alternative, strictly correct
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but more costly computation based on evaluating

i

(ryi +Ly/2) (mod L,) —L,/2 (2.4.1)

is not used.
Aided by these definitions, as well as by

#define Sqr(x)  ((x) * (x))
#define Cube(x) ((x) * (x) * (x))
#define DO_MOL for (n = 0; n < nMol; n ++)

we arrive at the following revised version of the interaction function, now also

including the contribution of the interactions to the virial.

void ComputeForces ()

{
VecR dr;
real fcVal, rr, rrCut, rri, rri3;
int ji1, j2, n;
rrCut = Sqr (rCut);
DO_MOL VZero (mol[n].ra);
uSum = O.;
virSum = O.;
for (j1 = 0; j1 < nMol - 1; j1 ++) {
for (j2 = j1 + 1; j2 < nMol; j2 ++) {
VSub (dr, mol[j1].r, mol[j2].r);
VWrapAll (dr);
rr = VLenSq (dr);
if (rr < rrCut) {
rri = 1. / rr;
rri3 = Cube (rri);
fcVal = 48. * rri3 * (rri3 - 0.5) * rri;
VVSAdd (mol[j1].ra, fcVal, dr);
VVSAdd (mol[j2].ra, - fcVal, dr);
uSum += 4. * rri3 * (rri3 - 1.) + 1.;
virSum += fcVal * rr;
F
}
}
}

20

25

The code is more concise and transparent, and the use of the vector definitions
reduces the scope for typing errors that might otherwise go unnoticed. It should

also be noted that by simply changing the definition of the structure VecR to

typedef struct {
real x, y, z;
} VecR;
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and suitably augmenting the vector operations defined above, as well as ViWrapA1l,
to include a z component, the code can be used without change for three-
dimensional computations. The benefits of this kind of approach will be appreci-
ated more as the problems become increasingly complicated. It is worth reiterating
that this approach to the force computations involves all N,,(N,, — 1)/2 pairs of
atoms, and is not the way to carry out serious simulations of this kind; however, a
small performance improvement might be achieved here by testing the magnitudes
of the individual dr components as they are computed to see if they exceed rCut,
and bypassing the atom pair as soon as this happens.

The function LeapfrogStep handles the task of integrating the coordinates
and velocities; it appears twice in the listing of SingleStep, with the argument
part determining which portion of the two-step leapfrog process, (2.3.4)—(2.3.5)
or (2.3.6), is to be performed.

void LeapfrogStep (int part)
{

int n;

if (part == 1) { 5
DO_MOL {
VVSAdd (mol[n].rv, 0.5 * deltaT, moll[n].ra);
VVSAdd (mol([n].r, deltaT, mol[n].rv);
}
} else { 10
DO_MOL VVSAdd (mol[n].rv, 0.5 * deltaT, mol[n].ra);
}
F

The function ApplyBoundaryCond, called after the first call to LeapfrogStep, is
responsible for taking care of any periodic wraparound in the updated coordinates.

void ApplyBoundaryCond ()
{

int n;

DO_MOL VWrapAll (mol[n].r); 5
}

The brevity of these functions, and their applicability in both two and three dimen-
sions, are a result of the vector definitions introduced previously.

Initial state

Preparation of the initial state uses the following three functions, one for the atomic
coordinates, the others for the velocities and accelerations. The number of atoms
in the system is expressed in terms of the size of the array of unit cells in which the
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atoms are initially arranged, the relevant values appear in initUcell, which is a
vector with integer components defined as

typedef struct {
int x, y;
} VecI;

Here a simple square lattice (with the option of unequal edge lengths) is used, so
that each unit cell contains just one atom, and the system is centered about the
origin.

void InitCoords ()
{
VecR c, gap;
int n, nx, ny;

VDiv (gap, region, initUcell);
n = 0;
for (ny = 0; ny < initUcell.y; ny ++) {
for (nx = 0; nx < initUcell.x; nx ++) {
VSet (c, nx + 0.5, ny + 0.5); 10
VMul (c, c, gap);
VVSAdd (c, -0.5, region);
mol[n].r = c;
++ n;
} 15
}
F}

The new vector operations used here are

#define VMul(v1, v2, v3) \
(vl).x = (v2).x * (v3).x, \
(v1).y = (v2).y * (v3).y

and the corresponding VDiv.

The initial velocities are set to a fixed magnitude velMag that depends on the
temperature (see below), and after assigning random velocity directions the veloci-
ties are adjusted to ensure that the center of mass is stationary. The function VRand
(§18.4) serves as a source of uniformly distributed random unit vectors, here in two
dimensions. The accelerations are simply initialized to zero.

void InitVels ()
{

int n;

VZero (vSum); 5
DO_MOL {
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VRand (&mol[n].rv);
VScale (mol[n].rv, velMag);
VVAdd (vSum, moll[n].rv);

} 10
DO_MOL VVSAdd (mol[n].rv, - 1. / nMol, vSum);

F

void InitAccels ()

{ Is
int n;

DO_MOL VZero (mol[n].ra);
F

New vector operations used here are

#define VScale(v, s) \
(v).x *= s, \
(v).y *= s

#define VVAdd(v1l, v2) VAdd (v1, vi, v2)

Variables

It is debatable which should be discussed first, the program, or the variables on
which it operates. Here we have picked the former in order to provide some moti-
vation for a discussion of the latter.

The scheme we have chosen is that all variables needed by more than one func-
tion are declared globally; this implies that they are accessible to all functions’.
The alternative is to make extensive use of argument lists, perhaps using structures
to organize the data transferred between functions; while offering a means of reg-
ulating access to variables, it makes the program longer and more tedious to read,
so we forgo the practice.

Having settled this issue, what are the global variables used by the program? The
list of declarations — each type ordered alphabetically — follows:

Mol *mol;

VecR region, vSum;

VecI initUcell;

Prop kinEnergy, pressure, totEnergy;

real deltaT, demsity, rCut, temperature, timeNow, uSum, velMag, 5
virSum, vvSum;

int moreCycles, nMol, stepAvg, stepCount, stepEquil, stepLimit;

+ This is not an approach recommended for large software projects because it is difficult to keep track of (and
control) which variables are used where.



30 2 Basic molecular dynamics @

A new C structure is introduced for representing property measurements that will
undergo additional processing,

typedef struct {
real val, sum, sum2;
} Prop;

The three elements here are an actual measured value, a sum accumulated over
several such measurements in order to evaluate the average, and a sum of squares
used in evaluating the standard deviation (more on this below).

The following definition is also included, both to ensure the correct dimension-
ality of the vectors, and for use in formulae that depend explicitly on whether the
system is two- or three-dimensional,

#define NDIM 2

Most of the names should be self-explanatory. The variable mol is actually a
pointer to a one-dimensional array that is allocated dynamically at the start of the
run and sized according to the value of nMol. From a practical point of view, writ-
ing *mol in the above list of declarations is equivalent to mol1[. . . ] with a specific
array size, except that in the former case the array size is established when the pro-
gram is run rather than at compilation time'. The vector region contains the edge
lengths of the simulation region. The other quantities, as well as a list of those vari-
ables supplied as input to the program, will be covered by the remaining functions
below.

All dynamic array allocations are carried out by the function A1locArrays. In
this example there is just a single array,

void AllocArrays ()

{
AllocMem (mol, nMol, Mol);
}

where A1locMem is defined as

#define AllocMem(a, n, t) a = (t *) malloc ((n) * sizeof (t))

and provides a convenient means of utilizing the standard C memory allocation
function malloc while ensuring the appropriate type casting.

T The advantage of such dynamic allocation (in addition to bypassing any size limitations that some compilers
might impose on arrays whose limits are included in the program source) is that it enhances program flexibility
by eliminating any arbitrary built-in size assumptions.
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Other variables required for the simulation (expressed in MD units when appro-
priate), excluding those that form part of the input data, are set by the function
SetParams,

void SetParams ()
{
rCut = pow (2., 1./6.);
VSCopy (region, 1. / sqrt (density), initUcell);
nMol = VProd (initUcell); 5
velMag = sqrt (NDIM * (1. - 1. / nMol) * temperature);
}

which uses the additional definitions

#define VSCopy(v2, s1, v1) \
(v2).x = (s1) * (v1).x, \
(v2).y = (s1) * (vl).y

#define VProd(v) ((v).x * (v).y)

The evaluation of nMol and region assumes just one atom per unit cell, and al-
lowance is made for momentum conservation (which removes NDIM degrees of
freedom) when computing velMag from the temperature.

Measurements

In this introductory case study the emphasis is on demonstrating a minimal working
program. The measurements of the basic thermodynamic properties of the system
that are included are covered by the following functions. The quantity vSum is used
to accumulate the total velocity (or momentum, since all atoms have unit mass) of
the system; the fact that this should remain exactly zero serves as a simple — but
only partial — check on the correctness of the calculation.

The first of the functions computes the velocity and velocity-squared sums and
the instantaneous energy and pressure values.

void EvalProps ()
{

real vv;

int n;

VZero (vSum);

vvSum = O.;

DpO_MOL {
VVAdd (vSum, mol[n].rv);
vv = VLenSq (mol[n].rv); 10
vvSum += vv;

}
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kinEnergy.val = 0.5 * vvSum / nMol;
totEnergy.val = kinEnergy.val + uSum / nMol;
pressure.val = density * (vvSum + virSum) / (nMol * NDIM); Is

}

The second function collects the results of the measurements, and evaluates
means and standard deviations upon request.

void AccumProps (int icode)
{
if (icode == 0) {
PropZero (totEnergy);
PropZero (kinEnergy); 5
PropZero (pressure);
} else if (icode == 1) {
PropAccum (totEnergy);
PropAccum (kinEnergy);
PropAccum (pressure); 10
} else if (icode == 2) {
PropAvg (totEnergy, stepAvg);
PropAvg (kinEnergy, stepAvg);
PropAvg (pressure, stepAvg);
} 15
}

Depending on the value of the argument icode (0, 1 or 2), AccumProps will
initialize the accumulated sums, accumulate the current values, or produce the
final averaged estimates (which overwrite the accumulated values). The follow-
ing operations’ are defined for use with the Prop structures (Max is defined in
§18.2):

#define PropZero(v) \
v.sum = 0., \
v.sum2 = 0.
#define PropAccum(v) \
v.sum += v.val, \ s
v.sum2 += Sqr (v.val)
#define PropAvg(v, n) \
v.sum /= n, \
v.sum2 = sqrt (Max (v.sum2 / n - Sqr (v.sum), 0.))
#define PropEst (v) \ 10

v.sum, v.sum2

+ While the argument of the square-root function evaluated here should never be negative, the Max test is in-
cluded to guard against computer rounding error in cases where the result is close to zero.
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Input and output

The function GetNameList, called from main, reads all the data required to spec-
ify the simulation from an input file. It uses a Fortran-style (almost) ‘namelist’ to
group all the data conveniently and automate the input task. It also checks that all
requested data items have been provided. For this case study the list of variables is
specified in the following way:

NameList nameList[] = {
NameR (deltaT),
NameR (density),
NameI (initUcell),
NameI (stepAvg), 5
NameI (stepEquil),
NameI (stepLimit),
NameR (temperature),

};

The C macro definitions NameR and Namel are used to signify real and integer
quantities (either single variables, or entire structures with all members of that
type). The name of the data file from which the input values are read is derived
from the name of the program (if the program happens to be called md_prog
then the data file should be named md_prog. in). The function PrintNameList,
also called by main, outputs an annotated copy of the input data. Full details
of these functions and macros appear in §18.5; VCSum simply adds the vector
components.
Output from the run is produced by

void PrintSummary (FILE *fp)
{
fprintf (fp,
"%6d %8.4f J7.4f }47.4f J7.4Ff }7.4f }7.4f J7.4f }7.4f\n",
stepCount, timeNow, VCSum (vSum) / nMol, PropEst (totEnergy), 5
PropEst (kinEnergy), PropEst (pressure));

Data are written to a file, which in the present case is just the user’s terminal be-
cause the call to PrintSummary in SingleStep used the argument stdout. By
calling this function twice, with different arguments, output can be sent both to the
terminal and to a file that logs all the output'.

F The reader unfamiliar with standard C library functions will find fprintf — and numerous other functions
used later — described in any text on the C language, or in generally available C documentation.
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2.5 Results

In this section we present a few of the results that can be obtained from simulations
of the two-dimensional soft-disk fluid. In view of the fact that the MD algorithm
described here is far from efficient, the results will mostly be confined to short
simulation runs of small systems, just to give a foretaste of what is to come. More
detailed results based on more extensive computations will appear later.

The input file used in the first demonstration contains the following entries:

deltaT 0.005
density 0.8
initUcell 20 20
stepAvg 100
stepEquil 0
stepLimit 10000
temperature 1.

The initial configuration is a 20 x 20 square lattice so that there are a total of
400 atoms. The timestep value deltaT is determined by the requirement that en-
ergy be conserved by the leapfrog method (to be discussed in §3.5). The initial
temperature is T = 1; temperature will fluctuate during the run, and no attempt
will be made here to set the mean temperature to any particular value.

Conservation laws

The most obvious test that the computation must pass is that of momentum and

energy conservation. While the former is intrinsic to the algorithm and, assuming
eriodic boundaries, its violation would suggest a software error, the latter is sen-
@s)itive to the choice of integration method and the size of Af. One quantity that
is not conserved is angular momentum; a conservation law requires the system to

be invariant under some change, such as translation, but, because of the periodic
boundaries, the rotational invariance needed for angular momentum conservation

is not applicable. Programming errors can sometimes (but not always) be detected
by the violation of a conservation law; when this occurs the effect can be gradual,
intermittent, or catastrophic, depending on the cause of error.

In Table 2.1 we show an edited version of the output’ of the run specified above;
the results listed are the sum of the velocity components, the mean energy and
kinetic energy per atom, their standard deviations, and the mean pressure. Clearly,
energy and momentum are conserved as expected, kinetic energy fluctuates by a

T Note that the higher-order digits of some of the values listed here — and elsewhere in the book — may vary, de-
pending on the computer, compiler and level of optimization; this is an expected consequence of the trajectory
sensitivity, discussed later in this section.
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Table 2.1. Edited output from a short MD run.

timestep > (E) o(E) (Eg) o(Eg) (P)

100 0.0000 0.9952 0.0002 0.6555 0.0910 4.5751
200 0.0000 0.9951 0.0001 0.6493 0.0118 4.5802
300 0.0000 0.9951 0.0001 0.6398 0.0168 4.6445
400 0.0000 0.9951 0.0000 0.6476 0.0155 4.5685
500 0.0000 0.9951 0.0000 0.6599 0.0167 4.4682
1000 0.0000 0.9950 0.0000 0.6481 0.0256 4.5489
2000 0.0000 0.9951 0.0001 0.6500 0.0125 4.5370
3000 0.0000 0.9951 0.0001 0.6301 0.0166 4.6898
5000 0.0000 0.9952 0.0001 0.6410 0.0139 4.6254
10000 0.0000 0.9949 0.0001 0.6535 0.0205 4.4886

limited amount, and it is also apparent that as a result of some of the initial kinetic
energy being converted to potential energy the temperature of the system (here
T = Ek) has dropped considerably below the initial setting.

Equilibration

Characterizing equilibrium is by no means an easy task, especially for small sys-
tems whose properties fluctuate considerably. Averaging over a series of timesteps
will reduce the fluctuations, but different quantities relax to their equilibrium av-
erages at different rates, and this must also be taken into account when trying to
establish when the time is ripe to begin making measurements. Fortunately, re-
laxation is generally quite rapid, but one must always beware of those situations
where this is not true. Equilibration can be accelerated by starting the simulation
at a higher temperature and later cooling by rescaling the velocities (this is similar,
but not identical, to using a larger timestep initially); too high a temperature will,
however, lead to numerical instability.

One simple measure of equilibration is the rate at which the velocity distribu-
tion converges to its expected final form. Theory [mcq76] predicts the Maxwell
distribution

fv) = % e VT 2.5.1)

(in MD units) which, after angular integration, becomes

) oc itV 2T (2.5.2)
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The distribution can be measured by constructing a histogram of the velocity values
{h, | n = 1,...Np}, where h, is the number of atoms with velocity magnitude
between (n — 1)Av and nAv, Av = v, /Ny, and v,, is a suitable upper limit to v.
The normalized histogram represents a discrete approximation to f (v).

The function that carries out this computation® is

void EvalVelDist ()

{
real deltaV, histSum;
int j, n;

if (countVel == 0) {
for (j = 0; j < sizeHistVel; j ++) histVel[j] = 0.;

}

deltaV = rangeVel / sizeHistVel;

DO_MOL { 10
j = VLen (mol[n].rv) / deltaV;
++ histVel[Min (j, sizeHistVel - 1)];

}

++ countVel;

if (countVel == limitVel) { Is
histSum = 0. ;
for (j = 0; j < sizeHistVel; j ++) histSum += histVel[j];
for (j = 0; j < sizeHistVel; j ++) histVel[j] /= histSum;
PrintVelDist (stdout);
countVel = 0; 20

}

}

in which the definitions Min (§18.2) and

#define VLen(v) sqrt (VDot (v, v))

are used. Depending on the value of countVel, the function will, in addition to
adding the latest results to the accumulated total, either initialize the histogram
counts, or carry out the final normalization. Other kinds of analysis in subsequent
case studies will involve functions that operate in a similar manner.

In order to use this function storage for the histogram array must be allocated,
and a number of additional variables declared and assigned values. The variables
are

real *histVel, rangeVel;
int countVel, limitVel, sizeHistVel, stepVel;

& pr_02_2
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and those included in the input data must be added to the array nameList,

NameI (limitVel),
NameR (rangeVel),
NameI (sizeHistVel),
NameI (stepVel),

Allocation of the histogram array is included in A1locArrays,

AllocMem (histVel, sizeHistVel, real);

Initialization, in SetupJob, requires the additional statement

countVel = 0;

and the histogram function is called from SingleStep by

if (stepCount >= stepEquil &&
(stepCount - stepEquil) 7, stepVel == 0) EvalVelDist ();

Histogram output is provided by the function

void PrintVelDist (FILE *fp)
{

real vBin;

int n;

printf ("vdist (7.3f)\n", timelNow);
for (n = 0; n < sizeHistVel; n ++) {
vBin = (n + 0.5) * rangeVel / sizeHistVel;
fprintf (fp, "%8.3f %8.3f\n", vBin, histVell[n]);
} 10
}

To demonstrate the way in which the velocity distribution evolves over time dur-
ing the early portion of the simulation we study a system with N,, = 2500. Use
of a larger system than before produces smoother results, and these are further
improved by averaging over five separate runs with different random initial veloc-
ities; to simulate a system of this size efficiently we resorted to methods that will
be introduced in §3.4, although this has no effect on the results.

The initial velocities are based on random numbers generated using a default
initial seed; to change this value introduce a new integer variable randSeed (whose
default value is arbitrarily set to 17) and in SetupJob use this value to initialize a
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Fig. 2.3. Velocity distribution as a function of time; successively broader graphs are at
times 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.4, and 1.0 (the zero-time state — not shown — is a
spike at the initial velocity v/2).

different random sequence by the call

InitRand (randSeed);

Also add

NameI (randSeed),

to the array nameList. The input data are as above, except for

deltaT 0.001
initUcell 50 50
limitVel 4
randSeed 17
rangeVel 3.
sizeHistVel 50
stepVel 5

and randSeed is different for each run. The results are shown in Figure 2.3; the
final distribution develops rapidly and is reached within about 0.4 time units. From
results of this kind it is clear that there is no need to assign an initial velocity
distribution carefully — the system takes care of this matter on its own (for very
small systems there will be deviations from the theoretical distribution [ray91]).



2.5 Results i

The Boltzmann H-function occupies an important position in the development
of statistical mechanics [hua63]. It is defined as

H(t) = /f(v,t) log f (v, t) dv (2.5.3)

and it can be proved that (d H /dt) < 0, with equality only applying when f (v) is
the Maxwell distribution. In order to compute H (¢) we use the velocity histogram
{h,} obtained previously; if we neglect constants, H (¢) can be approximated by

h(t) =" h,log(h,/vi™) (2.5.4)

An additional variable is required for this computation, namely,

real hFunction;

and the following code must be added to the summary phase of EvalVelDist (for
the two-dimensional case),

hFunction = O0.;
for (j = 0; j < sizeHistVel; j ++) {
if (histVel[j] > 0.) hFunction += histVel[j] * log (histVell[jl /
((j + 0.5) * deltaV));
} 5

For output, add the extra line to PrintVelDist

fprintf (fp, "hfun: 78.3f 78.3f\n", timeNow, hFunction);

In Figure 2.4 we show the results of this analysis for several densities, using the
above system, but with a quarter the number of atoms to enhance the fluctuations.
The long-time limit of the H-function depends on T (as well as p), and since no
attempt is made to force the system to a particular temperature the limiting val-
ues will differ. Convergence is fastest at high density, while at lower density /()
does not begin to change until atoms come within interaction range. Finite systems
lack the monotonicity suggested by the theorem, but the overall trend is clear and,
strictly speaking, the theorem only addresses average quantities. A computation
of this kind was carried out in the early days of MD [ald58]; Boltzmann would
presumably have found the results much to his liking.

Thermodynamics

To provide a glimpse of what can be done, we show a few measurements made
during some short test runs using as input data,
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h-function

time

Fig. 2.4. Time dependence of the Boltzmann H-function (neglecting constants) start-
ing from an ordered state, at densities 0.2—1.0; convergence is faster at higher
density.

deltaT 0.005
density 0.8
initUcell 20 20
stepAvg 1000
stepEquil 1000
stepLimit 3000
temperature 1.

Various values of density are used; any data items not explicitly shown take val-
ues specified previously. The output is summarized in Table 2.2.

It is unlikely that the temperature (here just (Eg)) is the one wanted, and the
value will certainly not be the one used to create the initial state. To obtain a partic-
ular (T'), the velocities must be adjusted over a series of timesteps until the system
settles down at the correct state point. The actual velocity rescaling should be based
on (T), and not on the instantaneous 7T values that may be subject to consider-
able fluctuation. Though not apparent here, the energy can gradually drift upward
because of the numerical error in the leapfrog method; the drift rate for a given
temperature depends on At and is negligible for sufficiently small values. We will
return to these matters in Chapter 3.
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Table 2.2. Measurements from soft-disk simulations at different densities: total energy,
kinetic energy and pressure are shown.

14 (E) (Eg)  o(Eg) (P) o(P)

0.4 0.9935 0.917 0.014 0.803 0.056
0.6 0.9936 0.823 0.016 1.955 0.099
0.8 0.9952 0.645 0.022 4.578 0.165

Trajectories

The first opportunity for using MD to provide results that are unobtainable by other
means is in the study of the trajectories followed by individual atoms. Clearly, a
single trajectory conveys very little information, but if the trajectories of groups of
nearby atoms are examined a clear picture emerges of the different behavior in the
solid, liquid and gaseous states of matter. In the solid phase the atoms are confined
to small vibrations around the sites of a lattice, the gas is distinguished by trajecto-
ries that are ballistic over relatively long distances, while the liquid is characterized
by generally small steps, occasional rearrangement, and no long-range positional
order. The differences in the trajectories are reflected at the macroscopic level by
the values of the diffusion coefficient. Diffusion is just the mean-square atomic
displacement (after allowing for periodic wraparound in the MD case), and is one
example of a transport process that MD can examine directly; we will return to this
in Chapter 5.

The best way to observe these features is by running an MD simulation interac-
tively and watching the trajectories as they develop for different T and p. Trajecto-
ries can be shown on a computer display screen by simply drawing a line between
the atomic positions every few timesteps; whenever a periodic boundary is crossed
simply interrupt the trajectory drawing and restart it from the opposite boundary.
Suitable graphics functions are readily added to the program; all that is required,
apart from setting up the display functions and arranging for atomic coordinates to
be converted to screen coordinates, is the decision as to how frequently the display
should be updated. Typical trajectories obtained in the solid and dense fluid phases
appear in Figure 2.5.

An example of a simple interactive MD simulation is shown in Figure 2.6. Here
the user interface permits realtime control of the computation, including the choice
of system size, altering the values of T and p, and changing the display update rate.
The details involved in writing such programs depend on the computer and soft-
ware environment; this two-dimensional example is described in [rap97], although
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Fig. 2.5. Trajectory plots at densities of 1.05 and 0.85 showing the difference between
solid and dense fluid phases, namely, localized and diffusing trajectories.

=I| mddisk | a

Fig. 2.6. Example of an interactive simulation.

a little more effort would be required for the corresponding three-dimensional case.
Visualization plays an essential role in many kinds of problem, and the ability
to interact with the simulation while in progress can prove to be of considerable
value.
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2.6 Further study

Compare the observed velocity distribution with the theoretical result
(2.5.2).

Check that the correct limiting values of H (¢), defined in (2.5.3), are ob-
tained.

Extend the graphics capability of the interactive MD program so that trajec-
tories can be displayed.
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Simulating simple systems

3.1 Introduction

In this chapter we focus on a number of techniques used in MD simulation, pri-
marily the methods for computing the interactions and integrating the equations of
motion. The goal is to generate the atomic trajectories; subsequent chapters will
deal with the all-important question of analyzing this raw ‘experimental’ data. We
continue to work with the simplest atomic systems, in other words, with monatomic
fluids based on the LJ potential, not only because we want to introduce the method-
ology gradually, but also because a lot of the actual qualitative (and even quantita-
tive) behavior of many-body systems is already present in this simplest of models.
Models of this kind are widely used in MD studies of basic many-body behavior,
examples of which will be encountered in later chapters.

3.2 Equations of motion

While Newton’s second law suffices for the dynamics of the simple atomic fluid
discussed in this chapter, later chapters will require more complex forms of the
equations of motion. The Lagrangian formulation of classical mechanics provides
a general basis for dealing with these more advanced problems, and we begin with a
brief summary of the relevant results. There are, of course, other ways of approach-
ing the subject, and we will also make passing reference to Hamilton’s equations.
A full treatment of the subject can be found in textbooks on classical mechanics,
for example [gol80].

Lagrange equations of motion

The starting point is Hamilton’s variational principle, which concisely summa-
rizes most of classical mechanics into the statement that the phase-space trajectory

44
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followed by a mechanical system is the one for which the time integral | £ dt is an
extremum, where £ is the Lagrangian. Given a set of N independent generalized
coordinates and velocities {qg;, ¢;} that describe the state of a conservative system
(one in which all forces derive from some potential energy function U), so that
L= L({qi}, {g:}, t), then £ can be shown to satisfy the Lagrange equations

d (0L L
—(—=)-=—=0, i=1,...N (3.2.1)
dt \ 9g; aq;

These equations form the starting point for many of the subsequent developments.
Newton’s second law is a simple consequence of this result, where, if ¢; denotes a
component of the cartesian coordinates for one of the atoms (and assuming identi-
cal masses m),

L=1m> §—U(lg:}) (3.2.2)

so that (3.2.1) becomes

. aU
mg; = T = fi (3.2.3)
1

where f; is the corresponding force component.

Lagrange equations with constraints

There are situations where it is desirable to define the dynamics in ways which
cannot be based just on forces obtained from some potential function. For example,
in the case of partially rigid molecules the lengths of interatomic bonds should be
kept constant. Such restrictions on the dynamics are called constraints and their
effect on the equations of motion is the appearance of extra terms that play the role
of internal forces, although these terms have an entirely different origin. Here we
outline the general framework; the details depend on the problem, and examples
will be encountered in Chapters 6 and 10.

Hamilton’s principle can be extended to systems with constraints having the
general form

Y angi+a =0, I=1..M (3.2.4)
k

This includes the special case of holonomic constraints for which there exist rela-
tions between the coordinates of form

gi(fa. 1) =0 (3.2.5)

¥
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in which case

0 0
aj = ﬁ, a = kil (3.2.6)
oG ot
The resulting Lagrange equations are
d (dL oL
— =)= May; i =1,...N 3.2.7
T <3(2,-> o ; 14 i (3.2.7)

where the time evolution of the M Lagrange multipliers {A;} is evaluated along
with the N coordinates: there is a total of N + M equations with a similar num-
ber of unknowns. The sum on the right-hand side of (3.2.7) can be regarded as a
generalized force, equivalent in its effect to the imposed constraints.

Hamilton equations of motion
An alternative formulation of the equations of motion sometimes appears in the
MD literature. Replace the generalized velocities {¢;} in the Lagrange formulation
by generalized momenta

pi = 0L/34; (32.8)
(if the coordinates are cartesian, then p; = mgq;) and consider the Hamiltonian
H =H({g:}, {p:}, 1) defined by

M=D dipi—L (3.2.9)

i

The two first-order equations of motion associated with each coordinate are

oH IH
gi = —, pi=—7— (3.2.10)
ap; aq;
If H has no explicit time dependence, then H = 0, and H — the total energy — is a
conserved quantity.

3.3 Potential functions
Origins
Modeling of matter at the microscopic level is based on a comprehensive descrip-
tion of the constituent particles. Although such a description must in principle be
based on quantum mechanics, MD generally adopts a classical point of view, typ-
ically representing atoms or molecules as point masses interacting through forces
that depend on the separation of these objects. More complex applications are

likely to require extended molecular structures, in which case the forces will also
depend on relative orientation. The quantum picture of interactions arising from
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overlapping electron clouds has been transformed into a system of masses coupled
by exotic ‘springs’. The justification for this antithesis of quantum mechanics is
that not only does it work, but it appears to work surprisingly well; on the other
hand, the rigorous quantum mechanical description is still hard pressed in dealing
with even the smallest systems.

Obviously the structural models and potential functions used in classical MD
simulation should not be taken too literally, and the potentials are often referred
to as effective potentials in order to clarify their status. The classical approxima-
tion to the quantum mechanical description of a molecule and its interactions is
not derived directly from ‘first principles’, but, rather, is the result of adapting both
structure and potential function to a variety of different kinds of information; these
include the results of quantum mechanical energy calculations, experimental data
obtained by thermodynamic and various kinds of spectroscopic means, the struc-
ture of the crystalline state, measurements of transport properties, collision studies
using molecular beams, and so on [hir54, mai81]. These models undergo refine-
ment as new comparisons between simulation and experiment become available,
and whenever the evidence against a particular model becomes overwhelming, a
revised or even an entirely new model must be developed. (From a strictly theo-
retical point of view the interactions between molecules can always be written in
terms of a multipole expansion [pri84]; if most of the important behavior can be
confined to the leading-order terms, then this could be used as the basis for a model
potential. While such a systematic approach is appealing, it is not generally used
in practice.)

It is always the simplest models that are tried first. Atoms are modeled as point
particles interacting through pair potentials. Molecules are represented by atoms
with orientation-dependent forces, or as extended structures, each containing sev-
eral interaction sites; the molecules may be rigid, flexible, or somewhere in be-
tween, and if there are internal degrees of freedom there will be internal forces as
well. The purpose of this book is not to discuss the design of molecular models; we
will make use of existing models and — from a pedagogical viewpoint — the sim-
pler the model the better. Our aim is to demonstrate the general methodology by
example, not to review the enormous body of literature devoted to many different
kinds of model developed for specific applications. As far as MD is concerned the
complexity of the model has little effect on the nature of the computation, merely
on the amount of work involved.

Example potentials

The most familiar pair interaction is the LJ potential, introduced in (2.2.1). It has
been used quite successfully for liquid argon [rah64, ver67] (although there are
better potentials [bar71, mai81]), and is also often used as a generic potential

¥
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for qualitative explorations not involving specific substances. The LJ interaction
is characterized by its strongly repulsive core and weakly attractive tail. To keep
computation to a reasonable level the interaction is truncated at a relatively short
range; at a typical cutoff distance of 7. = 2.5 (in MD units) the interaction energy
is just 0.016 of the well depth.

The discontinuity at 7. affects both the apparent energy conservation and the ac-
tual atomic motion, with atoms separated by a distance close to 7, sometimes mov-
ing repeatedly in and out of interaction range. The discontinuity can be smeared
out by changing the form of the potential function slightly, although this must be
done carefully since it is the potential that defines the model. For example, a poten-
tial function u(r) can be modified to eliminate the discontinuity in both u(r) and
the force —u’(r) by replacing it with

du(r)
dr

r—r.) (3.3.1)

r=re

ur(r) =u@) —ulre) —

This modification applies across the entire interaction range; an example of an al-
ternative that confines the change to the vicinity of . involves the use of a cubic
spline polynomial (as in §12.3) that interpolates smoothly and differentiably be-
tween the value of u(r) at r = r. — ér and zero at 7.

A slight change to the LJ interaction leads to a potential that is entirely repulsive
in nature and very short-ranged (2.2.2). The particles represented by this potential
are little more than soft spheres (in three dimensions, or disks in two), although
softness is confined to a very narrow range of separations and the spheres rapidly
tend to become hard as they are driven together. (Another version of the ‘soft-
sphere’ interaction retains just the » ~'? term of the LJ potential, again with a cutoff
at which u(r) is discontinuous; we will not consider this variant here.) A system
subject to the original LJ potential can exist in the solid, liquid, or gaseous states;
the attractive part of the potential is used to bind the system when in the solid and
liquid states, and the repulsive part prevents collapse. When the attractive interac-
tion is eliminated, the behavior is determined primarily by density; at high density
the soft-sphere system is packed into a crystalline state, but once melted, unlike the
LJ case where there is also a liquid—gas phase transition, the liquid and gas states
are thermodynamically indistinguishable.

Other functional forms can be used for interactions between atoms, and between
small molecules in cases where spherical symmetry applies [mai81]. Some prove
more suitable than others for particular problems. There is even an alternative to
the LJ potential for use in simple cases, namely, a function in which the r ~!? term
is replaced by Ae™"; while such a potential produces a softer central core, the
repulsive part contributes over a longer range. But since the subject is MD, not
the construction of potential functions, we will not pursue this subject any further.
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Fig. 3.1. The different approaches to computing interactions: all pairs, cell subdivision
(the cell size exceeds the interaction range), and neighbor lists (the concentric circles show
the interaction range and the extra area covered by the neighbor list for one of the atoms).

Interactions suitable for describing other kinds of molecule will be introduced in
subsequent chapters.

3.4 Interaction computations

All-pairs method

This method was introduced in §2.4. It is the simplest to implement, but extremely
inefficient when the interaction range r, is small compared with the linear size of
the simulation region. All pairs of atoms must be examined because, owing to the
continual rearrangement that characterizes the fluid state, it is not known in advance
which atoms actually interact. Although testing whether atoms are separated by
less than r, is only a part of the overall interaction computation, the fact that the
amount of computation needed grows as O(N,%,) rules out the method for all but
the smallest values of N,,. Two techniques for reducing this growth rate to a more
acceptable O(N,,) level, often used in tandem, will be discussed here; to within
a numerical factor this clearly represents the lower bound for the amount of work
required to process all N, atoms. A schematic summary of the methods appears in
Figure 3.1.

Cell subdivision

Cell subdivision [sch73, hoc74] provides a means of organizing the information
about atom positions into a form that avoids most of the unnecessary work and
reduces the computational effort to the O (N,,) level. Imagine that the simulation
region is divided into a lattice of small cells, and that the cell edges all exceed r, in
length. Then if atoms are assigned to cells on the basis of their current positions it is
obvious that interactions are only possible between atoms that are either in the same
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cell or in immediately adjacent cells; if neither of these conditions are met, then
the atoms must be at least r. apart. Because of symmetry only half the neighboring
cells need be considered; thus a total of 14 neighboring cells must be examined
in three dimensions, and five in two dimensions (these numbers include the cell
itself). The wraparound effect due to periodic boundaries is readily incorporated
into this scheme. Clearly, the region size must be at least 47, for the method to be
useful, but this requirement is usually met. It is not essential that the cell edges
exceed r., but if this condition is not satisfied, further cells, not merely nearest
neighbors, will have to be included [que73].

The program for the cell-based force calculation involves a form of data organi-
zation known as a linked list [knu68]. Rather than accessing data sequentially, the
linked list associates a pointer p, with each data item x,,, the purpose of which is to
provide a nonsequential path through the data. Each linked list requires a separate
pointer f to access the first data item, and the item terminating the list must have
a special pointer value, such as —1, that cannot be mistaken for anything else. Thus
f = a points to x, as the first item in the list, p, = b points to x; as the sec-
ond item, and so on, until a pointer value p, = —1 is encountered, terminating the
list. (This kind of data organization will reappear in other contexts in subsequent
chapters.)

In the cell algorithm, linked lists are used to associate atoms with the cells in
which they reside at any given instant; a separate list is required for each cell. The
reason for using linked lists is to economize on storage. It is not known in advance
how many atoms occupy each cell, since the number can be anywhere between
zero and a value determined by the highest possible packing density; the use of se-
quential tables that list the atoms in each cell, while guaranteeing sufficient storage
so that any cell can be maximally occupied, is extremely wasteful. The linked list
approach does not have this problem because of the way the cell occupancy data
are organized; the total storage required for all the linked lists is fixed and known
in advance.

The additional variables required to support the cell method are

VecI cells;
int *cellList;

and memory allocation for the array cellList that will hold all the information
associated with the linked lists is added to the function AllocArrays,

AllocMem (cellList, VProd (cells) + nMol, int);
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where, in three dimensions,

#define VProd(v) ((v).x * (v).y * (v).z)

and, of course,

#define NDIM 3

typedef struct {
real x, y, Z;
} VecR; 5

typedef struct {
int x, y, Z;
} VecI;

Rather than use separate arrays for the two kinds of pointer, namely, those
between atoms in the same cell (p) and those to the initial atom in the list belong-
ing to each cell (f), the first nMol elements in cellList are used for the former
and the remainder for the latter. How the list elements are accessed will be clari-
fied by the program listing. The size of the cell array is determined in SetParams
(using the three-dimensional version of VSCopy),

VSCopy (cells, 1. / rCut, region);

We have tacitly assumed that it is most efficient to use the smallest cells (exceeding
r. in size) possible; only when the density is sufficiently low that the mean cell
occupancy drops substantially below unity is it worth considering using larger (and
hence fewer) cells.

The force computation function, including cell assignment, allowance for pe-
riodic boundaries, energy and virial calculation, is as follows* (this is the three-
dimensional version).

void ComputeForces ()
{
VecR dr, invWid, rs, shift;
VecI cc, miv, m2v, vOff[] = OFFSET_VALS;
real fcVal, rr, rrCut, rri, rri3, uVal; s
int ¢, j1, j2, ml, mix, mly, miz, m2, n, offset;

rrCut = Sqr (rCut);

VDiv (invWid, cells, region);

for (n = nMol; n < nMol + VProd (cells); n ++) celllList[n] = -1; 10
Dpo_MOL {

o pr_03_1
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VSAdd (rs, mol[n].r, 0.5, region);
VMul (cc, rs, invWid);

(e}
ce
ce

}

= VLinear (cc, cells) + nMol;
11List[n] = celllist[c];
11List[c] = n;

DO_MOL VZero (mol[n].ra);

uSum

virS

for
fo

=0.;

um = 0.;

(mlz = 0; miz < cells.z; mlz ++) {
r (mly = 0; mly < cells.y; mly ++) {

for (mix = 0; mlx < cells.x; mlx ++) {
VSet (mlv, mix, mly, miz);
ml = VLinear (mlv, cells) + nMol;
for (offset = 0; offset < N_OFFSET; offset ++) {
VAdd (m2v, mlv, vOff[offset]);
VZero (shift);
VCellWrapAll ();
m2 = VLinear (m2v, cells) + nMol;
DO_CELL (j1, m1) {
DO_CELL (j2, m2) {
if (m1 !'=m2 || j2 < j1) {
VSub (dr, mol[j1].r, mol[j2].r);
VVSub (dr, shift);
rr = VLenSq (dr);
if (rr < rrCut) {
rri = 1. / rr;
rri3 = Cube (rri);
fcVal = 48. * rri3 * (rri3 - 0.5) * rri;
uVal = 4. * rri3 * (rri3 - 1.) + 1.;
VVSAdd (mol[j1].ra, fcVal, dr);
VVSAdd (mol[j2].ra, - fcVal, dr);
uSum += uVal;
virSum += fcVal * rr;
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The above function is longer and more intricate than the all-pairs version in
§2.4, but, as we have already indicated, it is incomparably faster for systems of
beyond minimal size; within the limits set by numerical rounding it will of course
produce the same answers. The basic organization involves scanning cell pairs,
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namely each cell with itself and with half its neighbors (not only those sharing
a common face, but also those with a shared edge or corner); for each pair of
cells the atoms contained in each are also paired to determine which of them lie
within interaction range. Part of the code is devoted to the special handling of
cells adjacent to one or more of the periodic boundaries, and there is an implicit
assumption that there are at least three cells in each direction (otherwise the same
neighbor will be accessed on both sides).

As indicated above, the array cellList plays a dual role: the first part of the
array consists of pointers linking different atoms belonging to the same cell, while
the remaining elements, one per cell, point to the first atom in each cell; the value —1
indicates the final atom in the list belonging to a cell and an empty cell respectively.
If there are roughly as many cells as there are atoms this array requires close to two
elements per atom.

It is important to note that there is no check made to ensure that the cell assign-
ments are ‘legal’. If there is any risk that a component of cc might lie outside the
cell array, an indication that something is seriously wrong with the computation
since it implies an atom has escaped from the system (this is more likely to hap-
pen when using hard walls rather than periodic boundaries), a check of this kind is
easily inserted.

Several new constants and vector operations appear in this listing. The operation

#define VLinear(p, s) \
(((p).z * (s).y + (p).y) * (s).x + (p).x)

combines the components of a VecI quantity into an offset into a singly-indexed
array (the array cells is inherently three dimensional, but for computational effi-
ciency it is represented as a one-dimensional array that is accessed by just a single
index). Another vector operation is

#define VVSub(vl, v2) VSub (vi, vi, v2)

There is also an array vOff that specifies the offsets of each of the 14 neighbor
cells. The array covers half the neighboring cells, together with the cell itself; its
size and contents are specified as

#define N_OFFSET 14

#define OFFSET_VALS \
1{0,0,0}, {1,0,0}, {1,1,0}, {0,1,0%, {-1,1,0}, {0,0,1}, \
{1,0,1}, {1,1,1}, {0,1,1}, {-1,1,1}, {-1,0,1}, \

{-1,-1,1}, {0,-1,1}, {1,-1,1}} 5
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Dealing with periodic boundaries is handled by the definitions

#define VCellWrap(t)

if (m2v.t >= cells.t) {
m2v.t = 0;
shift.t = region.t;

} else if (m2v.t < 0) {
m2v.t = cells.t - 1;
shift.t = - region.t;

}

#define VCellWrapAll() \

{VCellWrap (x); \ 10
VCellWrap (y); \

VCellWrap (z);}

— - - - -

Finally, a loop over all atoms belonging to a particular cell is expressed concisely
as

#define DO_CELL(j, m) \
for (j = celllList[m]; j >= 0; j = cellList[j])

The corresponding two-dimensional version of the function is easily derived by
removing all references to the z components and reducing the number of cell offsets
to just the first five.

In view of the fact that the majority of the work in this function is carried out
inside a highly nested set of loops, it hardly comes as a surprise to learn that there
are different ways of organizing the computation. The method used here is to scan
over cells, then over offsets, and only then over cell contents; alternatives include
scanning over relative cell offsets and then over cells, or scanning the atoms in
the outermost loop, with inner loops that scan the neighboring cells of the cell
containing the atom together with their contents. Some computer architectures may
be sensitive to the method chosen (§17.6), otherwise it is a matter of convenience.
Since the cells are often used as part of the neighbor-list method, this issue is
usually not critical.

Neighbor-list method

Only a small fraction of the atoms examined by the cell method — an average of
47 /81 ~ 0.16 in three dimensions, 7/9 =~ 0.35 in two — lie within interaction
range. If we construct a list of such pairs from those found by the cell method, but
in order to allow this list to be useful over several successive timesteps we replace
r. in the test of interatomic separation by

Iy =T, + Ar (341)
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then it should be possible to benefit from this reduced neighborhood size [ver67].
The success of the approach relies on the slowly changing microscopic environ-
ment, which implies that the list of neighbors remains valid over a number of
timesteps, typically 10-20, even for relatively small Ar. The fact that the list con-
tains atom pairs that lie outside the interaction range ensures that over this se-
quence of timesteps no new interacting pairs can appear that are not already listed.
The only disadvantage is the additional storage needed for the list of pairs; once,
this might have proved an obstacle, but modern computers usually have sufficient
memory for all except (possibly) the very largest of systems.

The value of Ar is inversely related to the rate at which the list must be rebuilt,
and it also determines the number of extra noninteracting pairs that are included
in the list; it therefore has a certain influence on both processing time and storage
requirements. The decision to refresh the neighbor list is based on monitoring the
maximum velocity at each timestep and waiting until

Z(mlaxlvi |) > ZAA'; (3.4.2)

steps

before doing the refreshing. This criterion, which is equivalent to examining atomic
displacements, errs slightly on the conservative side, since it combines contri-
butions from different atoms, but it guarantees that no interacting pairs are ever
missed because atoms cannot approach from r, to r. during the elapsed time inter-
val; a more precise test could be based on the accumulated motions of individual
atoms, but, because the refreshing is already infrequent, the saving will be minimal.
Typically, for the fastest computation at liquid densities, Ar ~ 0.3—0.4.

The neighbor list can be represented in various ways, one of which is a simple
table of atom pairs — the method used here®. An alternative method, used in §12.2,
employs a separate list of neighbors for each atom; all lists are stored in a single
array with a separate set of indices specifying the range of list entries for each
atom. In either instance, the cell method is used to build the neighbor list, with the
cell size now being determined by the distance r,, rather than r. (if the system is too
small — relative to r, — for the cell method to work, then the more costly all-pairs
approach must be used to build the list).

The new variables required by the neighbor-list method are

real dispHi, rNebrShell;
int *nebrTab, nebrNow, nebrTabFac, nebrTabLen, nebrTabMax;

& pr_03_2
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The quantities that are set in SetParams are

VSCopy (cells, 1. / (rCut + rNebrShell), region);
nebrTabMax = nebrTabFac * nMol;

the initialization in SetupJob is

nebrNow = 1;

and additional input data items

NameI (nebrTabFac),
NameR (rNebrShell),

are required. The variable nebrTabFac determines how much storage should be
provided for the neighbor list (per atom), and rNebrShell is the variable corre-
sponding to Ar. The memory allocation in A1locArrays for the neighbor list is

AllocMem (nebrTab, 2 * nebrTabMax, int);

The decision as to when to refresh the neighbor list is based on information about
the maximum possible movement of the atoms; this is monitored in EvalProps by
adding

real vvMax;

vvMax = 0.;
DO_MOL {

vvMax = Max (vvMax, vv);
}
dispHi += sqrt (vvMax) * deltaT;
if (dispHi > 0.5 * rNebrShell) nebrNow = 1;

If a refresh is due, it is carried out during the next timestep in SingleStep,

LeapfrogStep (1);

ApplyBoundaryCond () ;

if (nebrNow) {
nebrNow = 0; 3
dispHi = 0.;
BuildNebrList ();

}

ComputeForces ();

LeapfrogStep (2); 10
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Refreshing the neighbor list implies complete reconstruction. The construction
function is very similar to the cell version of ComputeForces. The difference is
that, instead of computing the interactions, potentially interacting pairs are merely
recorded in the neighbor list for subsequent processing (each pair is recorded as two
consecutive values). Note the safety check to ensure that the neighbor list does not
grow beyond the storage available; the constant ERR_TO0_MANY_NEBRS denotes a
predefined error code (§18.4).

void BuildNebrList ()

{

VecR dr, invWid, rs, shift;

VecI cc, mlv, m2v, vOff[] = OFFSET_VALS;

real rrNebr;

int ¢, j1, j2, ml, mix, mly, mliz, m2, n, offset;

rrNebr = Sqr (rCut + rNebrShell);
VDiv (invWid, cells, region);

for (n = nMol; n < nMol + VProd (cells); n ++) celllList[n] = -1;

po_MOL {
VSAdd (rs, mol[n].r, 0.5, region);
VMul (cc, rs, invWid);
¢ = VLinear (cc, cells) + nMol;
celllList[n] = cellList[c];
celllList[c] = n;
}
nebrTabLen = 0;
for (mlz = 0; mlz < cells.z; mlz ++) {
for (mly = 0; mly < cells.y; mly ++) {
for (mlx = 0; mlx < cells.x; mix ++) {
VSet (miv, mix, mly, miz);
ml = VLinear (mlv, cells) + nMol;
for (offset = 0; offset < N_OFFSET; offset ++) {
VAdd (m2v, mlv, vOff[offset]);
VZero (shift);
VCellWrapAll ();
m2 = VLinear (m2v, cells) + nMol;
DO_CELL (j1, m1) {
DO_CELL (j2, m2) {
if (m1 !'=m2 || j2 < j1) {
VSub (dr, mol[j1].r, mol[j2].r);
VVSub (dr, shift);
if (VLenSq (dr) < rrNebr) {
if (nebrTabLen >= nebrTabMax)
ErrExit (ERR_TOO_MANY_NEBRS);
nebrTab[2 * nebrTabLen] = j1;
nebrTab[2 * nebrTabLen + 1] = j2;
++ nebrTabLen;
F
b
}

10
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The neighbor list can now be used to compute the interactions; the following
function is also partly derived from the cell version of ComputeForces.

void ComputeForces ()
{
VecR dr;
real fcVal, rr, rrCut, rri, rri3, uVal;
int j1, j2, n; 5

rrCut = Sqr (rCut);
DO_MOL VZero (mol[n].ra);
uSum = O.;
virSum = O.; 10
for (n = 0; n < nebrTabLen; n ++) {
j1 = nebrTab[2 * n];
j2 = nebrTab[2 * n + 1];
VSub (dr, mol[j1].r, mol[j2].r);
VWrapAll (dr); Is
rr = VLenSq (dr);
if (rr < rrCut) {
rri = 1. / rr;
rri3 = Cube (rri);
fcVal = 48. * rri3 * (rri3 - 0.5) * rri; 20
uVal = 4. * rri3 * (rri3 - 1.) + 1.;
VVSAdd (mol[j1].ra, fcVal, dr);
VVSAdd (mol[j2].ra, - fcVal, dr);
uSum += uVal;
virSum += fcVal * rr; 25

The check for coordinate wraparound associated with periodic boundaries, us-
ing the function ApplyBoundaryCond (§2.4), is really only necessary when the
neighbor list is about to be refreshed, or when properties that depend on the atomic
coordinates are to be evaluated'.

+ While only a minor detail here, since the extra work is minimal, it becomes a more significant issue when
distributed processing is involved (§17.4).
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Further methods

For completeness, we make brief mention of two additional techniques that can
prove useful, although they are not in widespread use; both aim at reducing the
amount of work required for the interaction calculations.

The replication method simplifies the calculation of interactions across periodic
boundaries by introducing copies of all atoms that are within a distance r,, of any
region boundary, and placing them just outside the simulation region adjacent to
the opposite boundary. If these replica atoms are included in the force computa-
tion the wraparound checks are no longer required, but the cell array will have
to be enlarged to include the region that the replica atoms can occupy. The set of
replica atoms need only be rebuilt (taking care to avoid storage overflow) when
the neighbor list is refreshed, but the coordinates of these atoms are updated at
each timestep. This technique proves particularly useful for distributed and vector
processing (Chapter 17), but when the computations are carried out on a single
processor the gain is small and usually barely justifies the effort.

The multiple-timestep method is available for medium-range forces that ex-
tend beyond several mean atomic spacings (but excluding long-range forces of the
Coulomb type which require special treatment — Chapter 13) [str78]. Pairs of in-
teracting neighbors are divided into groups on the basis of their separation, and the
contributions of more distant groups are evaluated at less frequent intervals. While
the method has proved useful, it is essential to verify that this approximation does
not adversely affect the behavior being studied.

Force tabulation

In most MD simulations the bulk of the computation time is spent computing inter-
actions, and every effort is made to ensure that this is done as efficiently as possible.
As an alternative to direct evaluation, interactions can be computed using a simple
table lookup, possibly accompanied by interpolation for additional accuracy (there
are also situations where the potential only exists in tabular form). Which method
is faster depends on the complexity of the potential function. For the LJ case direct
evaluation is likely to be more efficient, but for a potential involving, for example,
exponential functions, tabulating the entire function, or at least certain parts of it,
could improve performance.

The value of tabulation can depend on the computer hardware in ways that are
not obvious. Just to give one example, several floating-point computations can of-
ten be carried out in the time required merely to retrieve one item at random from a
large table. So, for extensive simulations, some empirical investigation of this sub-
ject should prove worthwhile. If the potential function also depends on molecular
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orientation the lookup table becomes multidimensional, and storage limitations
may prevent construction of a table with adequate resolution.

3.5 Integration methods

Selection criteria

A variety of different numerical methods is available, at least in principle, for in-
tegrating the equations of motion [pre92]. Most can be quickly dismissed for the
simple reason that the heaviest component of the computation is the force eval-
uation, and any integration method requiring more than one such calculation per
timestep is wasteful, unless it can deliver a proportionate increase in the size of
the timestep Ar while maintaining the same accuracy. However, because of the
strongly repulsive force at short distances in the typical LJ-based potential, there
is, in effect, an upper bound to At, so that the well-known Runge—Kutta methods
are unable to enlarge the timestep beyond this limit. The same holds true for adap-
tive methods that change Ar dynamically to maintain a specified level of accuracy;
the fact that each atom experiences a rapidly changing environment due to the local
rearrangement of its neighborhood will defeat such an approach. Only two classes
of method have achieved widespread use, one a low-order leapfrog technique, the
other involving a predictor—corrector approach; both appear in various different but
equivalent forms.

Obtaining a high degree of accuracy in the trajectories is neither a realistic nor
a practical goal. As we will see below, the sharply repulsive potentials result in
trajectories for which even the most minute numerical errors grow exponentially
with time, rapidly overwhelming the power-law type of local error introduced by
any of the numerical integrators. This is not merely a mathematical curiosity, it
also corresponds to what happens in nature, and the issue of trajectory accuracy
beyond several average ‘collision times’ is not a meaningful one. So the criteria for
choosing a numerical method focus on energy conservation and on the ability to
reproduce certain time- and space-dependent correlations to a sufficient degree of
accuracy.

Leapfrog-type methods

Two very simple numerical schemes that are widely used in MD are known as
the leapfrog and Verlet methods [bee76, ber86b]; they are completely equivalent
algebraically. In their simplest form the methods yield coordinates that are accurate
to third order in At, and, from the point of view of energy conservation when LJ-
type potentials are involved, tend to be considerably better than the higher-order
methods discussed subsequently. Their storage requirements are also minimal.
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The derivation of the Verlet formula (described much earlier by Delambre
[lev93]) follows immediately from the Taylor expansion of the coordinate
variable — typically x(¢),

x(t +h) = x(t) + hx (@) + (h*/2)i @) + O (h®) (3.5.1)

where ¢ is the current time, and 7 = At. Here, x(¢) is the velocity component and
X(t) the acceleration. Note that although ¥ (¢) has been expressed as a function of
t, it is actually a known function — via the force law — of the coordinates at time
t. If we add the corresponding expansion for x (¢t — &) to (3.5.1) and rearrange, we
obtain

x(t +h) =2x(t) — x(t — h) + h*5(@t) + O (h*) (3.5.2)

The truncation error is of order O (h*) because the /> terms cancel’. The velocity
is not directly involved in the solution, but if required it can be obtained from

X(1) = [x(t + h) — x(t — )1/2h + O (h?) (3.5.3)

with higher-order expressions based on values from earlier timesteps available if
needed, though rarely used.

The (highly intuitive [fey63]) leapfrog method is equally simple to derive. Rewrite
the Taylor expansion as

x(t 4+ h) = x(t) + h[x (@) + (h/2)i@®)] + O (h?) (3.5.4)

The term multiplying /% is just X (¢ + h/2), so (3.5.4) becomes (3.5.6) below. The
result (3.5.5) is obtained by subtracting from x (¢ + //2) the corresponding expres-
sion for X (¢t — h/2). The leapfrog integration formulae are then

X(t+h/2) =x(t —h/2)+ hi(t) (3.5.5)
x(t+h)=x@)+ hx(t+h/2) (3.5.6)
The fact that coordinates and velocities are evaluated at different times does not

present a problem; if an estimate for x(¢) is required there is a simple connection
that can be expressed in either of two ways,

X(@)=x(tFh/2) £ (h/2)i(t) (3.5.7)

The initial conditions can be handled in a similar manner, although a minor in-
accuracy in describing the starting state, namely, the distinction between x (0) and
x(h/2),is often ignored. The implementation of this method in a slightly more con-
venient two-step form — that avoids having coordinates and velocities at different

T A possible disadvantage of (3.5.2) is that at low machine precision the h? term multiplying the acceleration
may prove a source of inaccuracy.

¥
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times — appeared in §2.3, and corresponds to

X+ h/2) =x@)+ (h/2)X(t) (3.5.8)

x(t+h)=x@)+hx(@+h/2) (3.5.9)
followed by

XE+h)=x@+h/2)+ (h/2)X( + h) (3.5.10)

Predictor—corrector methods

Predictor—corrector (PC) methods [gea71, bee76, ber86b] are multiple-value meth-
ods, in the sense that they make use of several items of information computed at
one or more earlier timesteps. In the two most familiar forms of the method there
is a choice between using the acceleration values at a series of previous timesteps —
the multistep (Adams) approach — or using the higher derivatives of the acceler-
ation at the current timestep (the Nordsieck method). For methods accurate to a
given power of 4 the two forms can be shown to be algebraically equivalent. The
methods are of higher order than leapfrog, but entail a certain amount of extra com-
putation and require storage for the additional variables associated with each atom.
We will focus just on multistep methods, because derivatives of the acceleration —
quantities that are not natural participants in Newtonian dynamics — are absent. The
advantage of using higher derivatives is that 4 can easily be changed in the course
of the calculation; this is never done in MD.

Since the origin of the numerical coefficients appearing in the PC formulae may
seem a little mysterious we include a brief summary of the derivation. The goal is
to solve the second-order differential equation

X=f(x,x,1t) (3.5.11)

with P () and C () denoting the formulae used in the predictor and corrector steps
of the calculation. The predictor step for time ¢ 4 % is simply an extrapolation of
values computed at earlier times ¢, t — A, .. ., namely,

k—1
P@): x(t+h) =x(t) +hi@) +h* D o f(t +[1—ilh) (3.5.12)

i=1

and, for a given value of k, this Adams—Bashforth formula (which contains the
same information as a Taylor expansion) provides exact results for x(¢) = t¢ pro-
vided ¢ < k; in the general case the local error is O (h**1). In order for this to be
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true the coefficients {¢;} must satisfy the set of k£ — 1 equations

k-1
1
1-ley = ———, qg=0,...k—2 (3.5.13)
; (¢ +1(q +2)
These and the subsequent sets of linear equations are readily solved; the coeffi-
cients are all rational fractions. A similar result holds for x,
k-1
P@): hi(t+h)y=x(t+h) —x@)+ 1Y ol ft+[1—ilh) (3.5.14)
i=1
with coefficients that satisfy equations
k=1
Xp—nmzri— (3.5.15)
i=1 Logt2
After computing the value of f (¢ + &) using the predicted values of x and x,
the corrections are made with the aid of the Adams—Moulton formula (which was
originally formulated as a separate implicit method, but subsequently adopted for
use as a means of refining the predicted estimate),

k—1
C(x): x(t+h) =x@)+hx@)+h* Z,B,-f(t +[2—1i]h) (3.5.16)
i=1
k—1
C(): hxi(t+h) =x@t+h)—x(@)+h? Zﬂ{f(t +[2—1i]h) (3.5.17)
i=1
with coefficients obtained from
1 k—1

k—1
1
2_.(1[:—’ 2—(1/:— 3.5.18
;j( = T DeTD) E( VB = 3 (3.5.18)

Note that the predicted values do not appear in the corrector formulae, except for
their involvement in evaluating f. The coefficients (c;, ...) obtained by solving
these equations for k = 4 and 5 appear in Table 3.1, and those for k = 4 are em-
bedded in the integration functions described below. The results are readily adapted
to the multivariable MD situation: the first part of the processing involves applying
the predictor step to all the variables (atomic coordinates and velocities), followed
by the force computation based on the predicted values, and finally the corrector
step.

While most of the dynamical problems studied here can be expressed as second-
order differential equations, there are cases where first-order equations are required.
Analogous PC formulae are available for the equation

i=fx, 1) (3.5.19)
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Table 3.1. PC coefficients for second-order equations.

k=4 (x1/24) 1 2 3
P(x): 19 ~10 3
P(x): 27 22 7
C(x): 3 10 -1
C(x): 7 6 —1
k=5 (x 1/360) 1 2 3
P(x): 323 —264 159  —38
P(¥): 502 —621 396  —97
C(x): 38 171 —-36
C(x): 97 114 -39

Table 3.2. PC coefficients for first-order equations.

k=3 (x1/12) 1 2 3
P(x): 23 —16 5
C(x): 5 8 -1

k=4 (x 1/24) 1 2 3 4
P(x): 55 —59 37 -9
C(x): 9 19 -5 1

The predictor and corrector are

k
P): x(t+h)=x(O)+h) o f@t+[1—ilh)

i=1
k

C): x(t+h)y=xO)+hY_ Bift+[2—ilh)
i=1

with coefficients that satisfy

k 1 k 1
1—i)la = ——), 2 i) = ——
g( o, §< )8 o

(3.5.20)

(3.5.21)

(3.5.22)

The resulting coefficients are listed in Table 3.2 and incorporated into programs

used in later case studies.

The functions that use the k = 4 PC method for integrating the MD equations
of motion follow; the predicted velocities are not always required but are included
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here for use in those cases where they are. Several definitions will first be intro-
duced to simplify the code. The basic operations involved in the PC method are
contained in the definitions

#define PCR4(r, ro, v, a, al, a2, t) \
r.t = ro.t + deltaT * v.t + wr * (cr[0] * a.t + \
cr[1] * al.t + cr[2] * a2.t)
#define PCV4(r, ro, v, a, al, a2, t) \
v.t = (r.t - ro.t) / deltaT + wv * (cv[0] * a.t + \ 5

cv[1] * al.t + cv[2] * a2.t)

and, for the particular case considered here,

#define PR(t) \
PCR4 (mol[n].r, mol[n].r, mol[n].rv, mol[n].ra, \
mol[n].ral, mol[n].ra2, t)
#define PRV(t) \
PCV4 (mol[n].r, mol[n].ro, mol[n].rv, mol[n].ra, \ 5
mol[n].ral, mol[n].ra2, t)
#define CR(t) \
PCR4 (mol[n].r, mol[n].ro, mol[n].rvo, mol[n].ra, \
mol[n].ral, mol([n].ra2, t)
#define CRV(t) \ 10
PCV4 (mol[n].r, mol[n].ro, mol[n].rv, mol[n].ra, \

mol[n].ral, mol[n].ra2, t)

where additional quantities ral, ra2, ro and rvo, all of type VecR, have been
added to the definition of the Mol structure; these quantities are used to hold the
acceleration values from two earlier timesteps (times ¢+ — 4 and ¢ — 2h), and to
provide temporary storage for the old coordinates and velocities from time ¢ so
that they can be overwritten by the predicted values (if the predicted velocity is not
required all reference to it can be dropped).

The predictor and corrector functions® can then be written in compact form as

void PredictorStep ()

{
real cr[] = {19., -10., 3.}, cv[] = {27., -22., 7.}, div = 24.,
Wr, Wv;
int n; 5
wr = Sqr (deltaT) / div;
wv = deltaT / div;
po_MOL {
mol[n].ro = mol[n].r; 10
mol[n].rvo = mol([n].rv;
PR (x);
PRV (x);

& pr_03_3,pr_03_4
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PR (y);

PRV (y); Is
PR (2);

PRV (z);

mol[n].ra2 = mol([n].ral;

mol[n].ral = mol[n].ra;

} 20
F}
void CorrectorStep ()
{
real cr[] = {3., 10., -1.}, cv[] = {7., 6., -1.}, div = 24., 25
WIr, WV;
int n;

wr = Sqr (deltaT) / div;
wv = deltaT / div; 30
DO_MOL {
CR (x);
CRV (x);
CR (y);
CRV (}’),’ 35
CR (z);
CRV (z);

In SingleStep, the changes necessary in order to use this method (including
removal of the calls to LeapfrogStep) are

PredictorStep ();

ApplyBoundaryCond ();

ComputeForces ();

CorrectorStep ();

ApplyBoundaryCond (); ’

The interactions are evaluated using the results of the predictor step, but are not
reevaluated following the corrector; as a consequence, those properties of the sys-
tem that depend on the interactions themselves, such as the pressure, are based
on the predicted rather than the corrected values — the mean error should be in-
significant. Variations of this method tried in the past include actually doing this
second evaluation — at considerable computational cost — and applying the cor-
rector more than once; neither were found to provide noticeable improvement
in accuracy and they are not used. Two calls to the periodic boundary function
ApplyBoundaryCond have been included here: if the neighbor-list method is used
the first call serves no useful purpose and can be omitted; the second call is re-
ally only necessary if the neighbor list is due for reconstruction, or if the corrected
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coordinates are needed for evaluating properties of the system, but because only a
small amount of computation is involved it is perhaps safer to leave it in place.

Comparison

Because of the greater flexibility and potentially higher local accuracy, PC meth-
ods tend to be suited to more complex problems such as rigid bodies or constrained
dynamics, where greater accuracy at each timestep is desirable. The leapfrog ap-
proach needs less work and reduced storage, but has the disadvantage that it must
sometimes be specially adapted for certain kinds of problem; because of its essen-
tially time-reversible nature, the leapfrog method provides better energy conser-
vation with strongly divergent LJ-type potentials at larger A¢, and because of its
minimal storage needs it is suitable for extremely large-scale studies where stor-
age can become an important issue. Tests of comparative accuracy will be given
in §3.7.

3.6 Initial state

Initial coordinates

If we assume that the purpose of the simulation is to study the equilibrium fluid
state, then the nature of the initial configuration should have no influence whatso-
ever on the outcome of the simulation. In choosing the initial coordinates, the usual
method is to position the atoms at the sites of a lattice whose unit cell size is cho-
sen to ensure uniform coverage of the simulation region. Typical lattices used in
three dimensions are the face-centered cubic (FCC) and simple cubic, whereas in
two dimensions the square and triangular lattices are used; if the goal is the study
of the solid state, then this will dictate the lattice selection. There is little point in
laboriously constructing a random arrangement of atoms, typically using a Monte
Carlo procedure to avoid overlap, since the dynamics will produce the necessary
randomization very quickly’.

The function that generates an FCC arrangement (with the option of unequal
edges) follows; there are four atoms per unit cell, and the system is centered at the
origin. Examples of other lattices are shown subsequently.

void InitCoords ()
{
VecR c, gap;
int j, n, nx, ny, nz;

VDiv (gap, region, initUcell);

+ An obvious way of reducing equilibration time is to base the initial state on the final state of a previous run.
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n = 0;
for (nz = 0; nz < initUcell.z; nz ++) {
for (ny = 0; ny < initUcell.y; ny ++) {
for (nx = 0; nx < initUcell.x; nx ++) { 10
VSet (¢, nx + 0.25, ny + 0.25, nz + 0.25);
VMul (c, c, gap);
VVSAdd (c, -0.5, region);
for (j =0; j<4; j++) {
mol[n].r = c; Is
if (G 1=3) {
if (j != 0) mol[n].r.x += 0.5 * gap.x;
if (j != 1) mol[n].r.y += 0.5 * gap.y;
if (j !'= 2) mol[n].r.z += 0.5 * gap.z;
} 20

++ n;

For the FCC lattice, evaluation of the region size in SetParams (§2.4) uses the
expression

VSCopy (region, 1. / pow (density / 4., 1./3.), initUcell);

and the total number of atoms must be changed to

nMol = 4 * VProd (initUcell);

Examples of alternative versions of InitCoords when other lattice arrange-
ments are used as the initial state, together with other necessary changes, will now
be demonstrated. For the simple cubic lattice, where there is only a single atom in
each unit cell,

void InitCoords ()
{
VecR c, gap;
int n, nx, ny, nz;

VDiv (gap, region, initUcell);

n = 0;

for (nz = 0; nz < initUcell.z; nz ++) {

for (ny = 0; ny < initUcell.y; ny ++) {
for (nx = 0; nx < initUcell.x; nx ++) { 10

VSet (c, nx + 0.5, ny + 0.5, nz + 0.5);
VMul (c, c, gap);
VVSAdd (c, -0.5, region);
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Minor changes are also required in SetParams,

VSCopy (region, 1. / pow (demsity, 1./3.), initUcell);
nMol = VProd (initUcell);

The body-centered cubic (BCC) lattice has two atoms per unit cell,

void InitCoords ()
{
VecR c, gap;
int j, n, nx, ny, nz;

VDiv (gap, region, initUcell);

n = 0;

for (nz = 0; nz < initUcell.z; nz ++) {

for (ny = 0; ny < initUcell.y; ny ++) {
for (nx = 0; nx < initUcell.x; nx ++) { 10

VSet (c, nx + 0.25, ny + 0.25, nz + 0.25);
VMul (c, c, gap);
VVSAdd (c, -0.5, region);
for (j =0; j<2;j++) {

mol[n].r = c; 5
if (j == 1) VVSAdd (mol[n].r, 0.5, gap);
++ n;
}
}
} 20

and in SetParams,

VSCopy (region, 1. / pow (demsity / 2., 1./3.), initUcell);
nMol = 2 * VProd (initUcell);

The diamond lattice calls for a slightly more complicated version of the FCC
code since the lattice is most readily defined as two staggered FCC lattices, one of
which is offset along the diagonal by a quarter unit cell.

void InitCoords ()
{
VecR c, gap;
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real subShift;
int j, m, n, nx, ny, nz; s

VDiv (gap, region, initUcell);

n = 0;
for (nz = 0; nz < initUcell.z; nz ++) {
for (ny = 0; ny < initUcell.y; ny ++) { 10

for (nx = 0; nx < initUcell.x; nx ++) {
VSet (c, nx + 0.125, ny + 0.125, nz + 0.125);
VMul (c, c, gap);
VVSAdd (c, -0.5, region);
for (m = 0; m < 2; m ++) { 15
subShift = (m == 1) ? 0.25 : 0.;
for (j =0; j <4; j++) o
VSAdd (mol[n].r, c, subShift, gap);
if (j 1=3) {

if (j != 0) mol[n].r.x += 0.5 * gap.x; 20
if (j != 1) mol[n].r.y += 0.5 * gap.y;
if (j != 2) mol[n].r.z += 0.5 * gap.z;
}
++ n;
} 25
}
}
}
}
} 30

The changes to SetParams are as for the BCC, but with the value 2 replaced by 8.
Returning to two-dimensional systems, the triangular lattice with two atoms per
unit cell requires

void InitCoords ()
{

VecR c, gap;

int j, n, nx, ny;

VDiv (gap, region, initUcell);
n = 0;
for (ny = 0; ny < initUcell.y; ny ++) {
for (nx = 0; nx < initUcell.x; nx ++) {
VSet (c, nx + 0.5, ny + 0.5); 10
VMul (¢, ¢, gap);
VVSAdd (c, -0.5, region);
for (j =0; j <2, j++) A
mol[n].r = c;
if (j == 1) VVSAdd (mol[n].r, 0.5, gap); Is
++ n;
}
}
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}
} 20

Because the unit cell shape is not square, the region size must be specified differ-
ently in SetParams,

VSet (region, initUcell.x / sqrt (demsity * sqrt (3.) / 2.),
initUcell.y / sqrt (density / (2. * sqrt (3.))));
nMol = 2 * VProd (initUcell);

One further initial arrangement is worth including here, namely, a totally ran-
dom set of initial coordinates. Though not used in the MD programes, it is useful
during analysis of spatial organization, in order to contrast MD results with those
of random point arrays.

void InitCoords ()
{
real randTab[100];
int i, n, k;

for (i = 0; i < 100; i ++) randTab[i] = RandR ();
DpO_MOL {
for (k = 0; k < NDIM; k ++) {
i = (int) (100. * RandR ());
VComp (mol[n].r, k) = (randTab[i] - 0.5) * VComp (region, k); 10
randTab[i] = RandR ();
}
}
F

The function RandR (§18.4) serves as a source of uniformly distributed random
values in the range (0, 1). To reduce any possible unwanted correlations in the
random numbers a shuffling scheme is employed; the random values are used as
indices for accessing a table of random numbers, the entries of which are replaced
each time they are used. Referencing a particular component of a vector is done by

#define VComp (v, k) \
*((k==0) ?&v).x : ((k==1) 7 &v).y : &(v).z))

Initial velocities

Similar considerations apply to the initial velocities, namely, that rapid equilibra-
tion renders the careful fabrication of a Maxwell distribution unnecessary. The sim-
ple function InitVels of §2.4 can be used, with VRand (§18.4) now producing a
random unit vector in three dimensions.
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Initialization of integration variables

In addition to setting the initial values for the more obvious physical quantities, the
numerical integrator requires its own initializing. For the leapfrog method,

void InitAccels ()
{

int n;

po_MoL { 3
VZero (mol[n].ra);
}
}

and for the PC method add

VZero (mol[n].ral);
VZero (mol[n].ra2);

While these are of course not the correct values, there is little benefit in doing a
more careful job, such as using a self-starting Runge—Kutta method for the first few
timesteps. One reason for this is that the trajectories are highly sensitive to com-
putational details such as rounding error (see below), and this has a much stronger
influence than the precise details of the initial state; the other is that additional
velocity adjustments are usually made early in the run to drive the system to the
desired temperature.

Temperature adjustment

Bringing the system to the required average temperature calls for velocity rescal-
ing. If there is a gradual energy drift due to numerical integration error, further
velocity adjustments will be required over the course of the run. The drift rate de-
pends on a number of factors — the integration method, potential function, the value
of At and the ambient temperature.

Since T fluctuates there is no point in making adjustments based on instanta-
neous estimates. Instead, we can make use of the average (T') values that are al-
ready available. The temperature adjustment (or velocity rescaling) function be-
low would therefore be called from SingleStep immediately following the call
AccumProps (2) used for summarizing the results.

void AdjustTemp ()
{

real vFac;

int n;
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vvSum = 0. ;

DO_MOL vvSum += VLenSq (mol[n].rv);
vFac = velMag / sqrt (vvSum / nMol);
DO_MOL VScale (mol[n].rv, vFac);

How frequently this adjustment is required, if at all, must be determined empiri-
cally; initially it should be omitted since it may interfere with energy conservation.
If needed, the interval between adjustments would be specified by the variable

int stepAdjustTemp;

the value included in the input data

NameI (stepAdjustTemp),

and the adjustment made by a call from SingleStep

if (stepCount J stepAdjustTemp == 0) AdjustTemp ();

A possible alternative would be to automate the scheme, applying the adjustment
whenever the drift exceeds a given threshold.

Forcing the system to have the correct (T') during the equilibration phase of the
simulation uses separate estimates of (Ex). In SingleStep add (after the call to
EvalProps)

if (stepCount < stepEquil) AdjustInitTemp ();

and introduce the new function

void AdjustInitTemp ()
{

real vFac;

int n;

kinEnInitSum += kinEnergy.val;

if (stepCount J stepInitlzTemp == 0) {
kinEnInitSum /= stepInitlzTemp;
vFac = velMag / sqrt (2. * kinEnInitSum);
DO_MOL VScale (mol[n].rv, vFac); 10
kinEnInitSum = 0.;

}

}
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with extra variables

real kinEnInitSum;
int stepInitlzTemp;

an additional input data item

NameI (stepInitlzTemp),

and initialization

kinEnInitSum = 0.;

3.7 Performance measurements

Accuracy

In order to demonstrate the accuracy of the integration methods, and the way in
which accuracy depends on At, we will carry out a series of measurements of the
energy as a function of time for the leapfrog and £ = 4 PC integrators with several
timestep values. We use the soft-sphere interaction rather than LJ in order to avoid
any additional fluctuations due to the discontinuity at r..

Input data to the calculation are as follows:

deltaT 0.00125
density 0.8
initUcell 555
nebrTabFac 8
rNebrShell 0.4
stepAvg 8000
stepEquil 0
stepInitlzTemp 999999
stepLimit 160000
temperature 1.

In the series of runs deltaT varies over a 16: 1 range between 0.001 25 and 0.02,
the value of stepLimit is chosen to give a total run length of 200 time units (the
extreme values being 160000 and 10000), and stepAvg is set so that a result
is output every ten time units. The initial state is a simple cubic lattice, so that
N,, = 125, and computations are carried out in 64-bit (double) precision. This
particular value of nebrTabFac is more than adequate for the soft-sphere fluid
at moderate density; for an LJ fluid the value depends on r., with 50 or larger
sometimes being required. A few brief test runs with the actual potential function
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Fig. 3.2. Energy drift for different values of At; leapfrog results (solid curves — the first
four of which are indistinguishable) are for Ar = 0.001 25, 0.0025, 0.005, 0.01 and 0.02;
predictor—corrector results (dashed curves) are for Ar = 0.001 25, 0.0025 and 0.005.

Table 3.3. Energy conservation for leapfrog (LF) and predictor—corrector (PC) methods.

At: 0.00125 0.00125 0.0025 0.0025 0.005 0.01
t LF PC LF PC LF LF
10 1.6846 1.6848 1.6848 1.6864 1.6858 1.6890
50 1.6846 1.6864 1.6846 1.6991 1.6857 1.6876
100 1.6846 1.6883 1.6848 1.7153 1.6843 1.6853
150 1.6846 1.6902 1.6847 1.7316 1.6853 1.6867
200 1.6847 1.6921 1.6848 1.7482 1.6852 1.6886

in the density range of interest should be sufficient to determine an appropriate
value, including a safety margin.

The results are shown in Figure 3.2, where it is clear that the leapfrog method
allows a much larger At for a given degree of energy conservation [ber86b]. To
emphasize the accuracy of the method — from the energy point of view — most of
these results are repeated in Table 3.3. To a limited extent, accuracy can be sacri-
ficed in the cause of speed, for example when the goal is a realtime demonstration,
but there are limits to the size of At if numerical instability is to be avoided. All
computations in the case studies will use 64-bit precision (although, in many cases,
32-bit arithmetic could be used without significantly affecting the results).
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Fig. 3.3. Convergence of mean kinetic energy from different initial states.

Reproducibility

The issue of reproducibility is tied to the rate of approach to equilibrium (or to
a stationary final state). In most cases, once the system has equilibrated there
will be no memory of the details of the initial state, but problems can arise in
cases of very slow convergence, or where there are different metastable states
in which the system can become trapped. If we exclude such special circum-
stances, the averaged results from separate runs should agree to within the limits
set by the fluctuations. As a brief demonstration we show how the kinetic energy
varies with time for simulations that differ only in the choice of the initial random
velocities.
The input data for this test are:

deltaT 0.005
density 0.8
initUcell 6 66
nebrTabFac 8
randSeed 17
rNebrShell 0.4
stepAvg 200
stepEquil 1000
stepInitlzTemp 200
stepLimit 6000
temperature 1.

The runs use different values of randSeed (such as 17, 18 and 19), and the results
are shown in Figure 3.3. Convergence of (Eg) to its final value is dominated by
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Table 3.4. Timing measurements (us/atom—step) for the different methods.

N pairs cells nebrs

64 22 2.0 0.7

216 7.0 23 0.7
512 16.0 2.2 0.7
1000 - 22 0.7

the temperature adjustments that are made while r < 5, but the differences between
the runs lie within the range of the fluctuations.

Efficiency

Two methods of improving the efficiency of the force computation were described
here, cells and neighbor lists. To show that these methods really do provide at least
some of the promised benefits we provide a few timing comparisons for the three
methods. It is the relative timings and not the the absolute values that are of most
interest here’. The major cause of any timing anomalies is the size of the cells used
in both the cell and neighbor-list methods; the fact that an integral number of cells
must fit along each region edge can lead to variations in the mean cell occupancy
that will affect performance, especially for smaller systems.

Assorted timing results for soft-sphere systems at p = 0.8 are shown in Table 3.4.
The runs extend over 4000 timesteps each, with T = 1 and At = 0.005; leapfrog
integration is used (the PC method takes slightly longer). When rNebrShell has
the value 0.4 the neighbor list is typically refreshed every 12—15 timesteps. If the
theoretical performance expectations are not met in these relatively small systems,
allowance should be made for contributions from other parts of the computation as
well as the features of the processor architecture?.

3.8 Trajectory sensitivity

One particular consequence of the numerical approach deserves special consider-
ation. We have seen how measurements of bulk properties, such as kinetic energy,

T These particular measurements were made on a 2 GHz Intel Pentium 4 Xeon processor (compiled with GNU
C using the optimization option -03); all case studies were run on this system.

% The way data are organized can sometimes affect performance. Patterns of memory access can have a signifi-
cant impact on computation speed, especially in modern computers with complex hardware architectures that
include mapped and interleaved memory and multilevel caches. Awareness of the issues involved, a subject
that can demand some familiarity with the specific processor design, may suggest how to arrange data and
organize the loop structure of a program; this is a specialized subject — ignored by most — that will not be
covered here.
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are reproducible, subject only to well-understood statistical fluctuations. Other
equilibrium and steady state properties are similarly well-behaved. When it comes
to the trajectories themselves it is an entirely different story: trajectories display an
exponential sensitivity to even the most minute perturbation. This implies that tra-
jectories are sensitive to the precision and rounding method used for floating-point
arithmetic, and even to the exact sequence of machine instructions in the program.
In the absence of infinite precision, there is no way in which two different MD
programs, or even the same MD program run on computers of different design,
will yield the same trajectories’. This is hardly surprising, but it is also irrelevant,
since there is no meaningful physical quantity that depends on just a single trajec-
tory realization; all meaningful measurements involve averages that conceal this
sensitivity, including the transport properties based on integration along the actual
trajectories (§5.2). This extreme sensitivity is the microscopic basis for molecular
chaos that plays such an important role in statistical mechanics; though the equa-
tions of motion are time reversible, this fact turns out to be unobservable in most
practical situations [orb67, lev93].

To actually measure this behavior we consider a system of 2N,, atoms in which
odd- and even-numbered atoms form independent but identical subsystems that
are assigned the same initial coordinates and velocities. One subsystem is slightly
perturbed by multiplying its velocities by 1+ €s, where € is a small number and s a
random value in the range (—1, 1), and we then examine how the root-mean-square
coordinate difference

N,
1 m
Ar = N_m ;(I’Qi — r2i_1)2 (381)

varies with time. Although the study uses soft atoms and a leapfrog method subject
to numerical integration error, this error is not the dominant factor, because similar
results can also be obtained in hard-sphere studies that are free from integration
error.

Only a few simple modifications® to the MD program are required. The atoms
are divided into two entirely separate subsystems, and nMol is doubled. The

+ And so the Laplacian vision is laid to rest.
& pr_03_5
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criterion for selecting pairs in BuildNebrList is replaced by

if ((G1 - j2) % 2 ==0&& (m1 !'=m2 || j2 < j1))

Properties such as the energy can be computed for either or both subsystems by

selecting which atoms contribute to the various sums. A simple addition to the
innermost loop of InitCoords produces consecutive pairs of atoms (n and n+1)
with the same initial coordinates,

mol[n + 1].r = mol[n].r;
n += 2;

and InitVels is replaced by

void InitVels ()

{
int n;
VZero (vSum); s
for (n = 0; n < nMol; n +=2) {
VRand (&mol[n].rv);
VScale (mol[n].rv, velMag);
mol[n + 1].rv = mol[n].rv;
VVSAdd (vSum, 2., mol[n].rv); 10
}
DO_MOL VVSAdd (mol[n].rv, - 1. / nMol, vSum);
F

The trajectory perturbation function is

void PerturbTrajDev ()
{

VecR w;

int n;

for (n = 0; n < nMol; n +=2) {

mol[n + 1].r = mol[n].r;

VRand (&w);

VWMul (w, w, mol[n].rv);

VSAdd (mol[n + 1].rv, mol[n].rv, pertTrajDev, w); 10
}
countTrajDev = 0;

}
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and trajectory analysis, allowing for periodic boundaries, is carried out by

void MeasureTrajDev ()
{

VecR dr;

real dSum;

int n;

dSum = 0.;
for (n = 0; n < nMol; n +=2) {
VSub (dr, mol[n + 1].r, mol[n].r);
VWrapAll (dr);
dSum += VLenSq (dr);
}
valTrajDev[countTrajDev] = sqrt (dSum / (0.5 * nMol));
++ countTrajDev;

The additional code needed in SingleStep consists of

if (stepCount == stepEquil) PerturbTrajDev ();
if (stepCount > stepEquil &&
(stepCount - stepEquil) J, stepTrajDev == 0) {
MeasureTrajDev ();
if (countTrajDev == limitTrajDev) {
PrintTrajDev (stdout);
PerturbTrajDev ();
BuildNebrList ();
}
}

and output is produced by

void PrintTrajDev (FILE *fp)
{

real tVal;

int n;

for (n = 0; n < limitTrajDev; n ++) {
tVal (n + 1) * stepTrajDev * deltaT;
fprintf (fp, "J.4e J.4e\n", tVal, valTrajDev([n]);

}
}

New variables needed for these measurements are

real *valTrajDev, pertTrajDev;
int countTrajDev, limitTrajDev, stepTrajDev;

i
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Fig. 3.4. Trajectory divergence for different initial velocity perturbations (the vertical
scale is logarithmic).

with additional input data items in nameList

NameI (limitTrajDev),
NameR (pertTrajDev),
NameI (stepTrajDev),

and an array allocated in Al1locArrays

AllocMem (valTrajDev, limitTrajDev, real);

The measurements shown in Figure 3.4 are based on a soft-sphere system with
an FCC initial state, N,, = 2048, T = 1, p = 0.8, and At = 0.005. Other input
data items include

limitTrajDev 100
pertTrajDev 1.0e-6
stepEquil 3000
stepTrajDev 20

Three values of the velocity perturbation pertTrajDev are used, namely, 107°,
10~ and 10~%; just one set of measurements averaged over all atoms is made after
allowing sufficient time for equilibration. The linear growth in log(Ar), measured
from time zero when the perturbation is applied and, depending on the perturbation,
extending to times between 2.5 and 4, corresponds to trajectories that diverge at an
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exponential rate. Once the size of the deviation reaches the atomic diameter (= 1)
the more familiar diffusive processes take over.

3.1
3.2

33
34
35
3.6

3.7

3.9 Further study

Implement the cell and neighbor-list methods in two dimensions.

See whether the £ = 5 PC method is an improvement over the k = 4 method
used here.

Explore the use of PC methods involving derivatives of the acceleration
[bee76, ber86Db].

Determine the performance benefits of tabulated interactions.

How is the computation speed affected by the way the data are organized?
How is energy conservation affected by smoothing (as in §12.3) the LJ in-
teraction near r.?

Investigate the use of multiple-timestep methods.
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Equilibrium properties of simple fluids

4.1 Introduction

In this chapter we examine the behavior of systems in equilibrium; in particular, we
focus on measurements of thermodynamic properties and studies of spatial struc-
ture and organization. The treatment of properties associated with the motion of
atoms — the dynamical behavior — forms the subject of Chapter 5.

While basic MD simulation methods — formulating and solving the equations of
motion — fall into a comparatively limited number of categories, a wide range of
techniques is used to analyze the results. Rarely is the wealth of detail embodied
in the atomic or molecular trajectories of particular interest in itself, and the issue
is how to extract meaningful information from this vast body of data; even a small
system of 10? structureless atoms followed over a mere 10* timesteps can produce
up to 6 x 107 numbers, corresponding to a full chronological listing of the atomic
coordinates and velocities. A great deal of data averaging and filtration of various
kinds is required to reduce this to a manageable and meaningful level; how this is
achieved depends on the questions that the simulation is supposed to answer. Much
of this processing will be carried out while the simulation is in progress, but some
kinds of analysis are best done subsequently, using data saved in the course of the
simulation run; the choice of approach is determined by the amount of work and
data involved, as well as the need for active user participation in the analysis.

Averages corresponding to thermodynamic quantities in homogeneous systems
at equilibrium are the easiest measurements to make. Statistical mechanics relates
such MD averages to their thermodynamic counterparts, and the ergodic hypoth-
esis can be invoked to justify equating trajectory averages with ensemble-based
thermodynamic properties [mcq76]. However, the fact that statistical mechanics
has no knowledge of trajectories means that it is incapable of discussing quanti-
ties that are defined in terms of atomic motion — diffusion for example. This is
the strength of MD; detailed trajectory histories are available, so that not only can

83
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quantities meaningful in a statistical mechanical framework be addressed, but so,
too, can any other conceivable quantity.

Some aspects of behavior, such as the structural correlations present in the fluid,
ranging from the basic pair correlation function to more subtle correlations involv-
ing both position and orientation, or the three-body correlation function, require
quite heavy calculations, often rivaling the interaction computation in terms of the
amount of work required. Fortunately, such calculations are not needed at each
timestep since fluid structure changes only gradually; the rate of change is indeed
the criterion for choosing the interval between such measurements.

If the system is spatially inhomogeneous, all quantities, from the simplest ther-
modynamic values onward, must be based on localized measurements. If the sys-
tem is also nonstationary over time, long term time averaging is ruled out because
it would obliterate the very effects being studied. In short, the more complex the
phenomenon the more demanding the measurement task. These topics will be en-
countered in Chapters 7 and 15.

4.2 Thermodynamic measurements

Relation to statistical mechanics

Measurements of equilibrium properties that are thermodynamic in nature can be
regarded as exercises in numerical statistical mechanics. In such instances MD
provides an alternative to Monte Carlo, and if no further information is required
about the system, computational efficiency alone should determine the choice of
technique. While Monte Carlo requires less computation per interacting atom pair,
because only the potential energy has to be evaluated, the number of Monte Carlo
cycles required to obtain uncorrelated samples (more precisely, a series of samples
that are only weakly correlated) may exceed the corresponding number of MD
timesteps. The reason for this is that the atomic displacements are randomly chosen
in Monte Carlo, and this can be a less efficient way for the system to traverse
configuration space than via the cooperative dynamics intrinsic to MD.

Because both the number of atoms and the total energy (assuming that numerical
drift has been suppressed) are fixed in the MD simulations encountered so far,
the relevant statistical mechanical ensemble for discussing equilibrium behavior
is the microcanonical (NVE) one. There is just one minor difference, in that each
conserved momentum component removes one degree of freedom, but this is a
negligible effect for systems beyond a minimal size.

Error analysis

The measurement process in MD is very similar to experiment. But the experi-
mentalist often has the advantage of knowing that each estimate is independent,
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allowing well-established statistical methods to be used in the data analysis. With
MD, where a series of measurements is carried out in the course of a simulation
of limited duration, there is no guarantee that successive estimates are sufficiently
unrelated to ensure the reliability of these simple statistical methods. Averages of
directly measured quantities may not be the main problem, given an adequate run
length, but statistical error estimates are particularly sensitive to correlations be-
tween samples.

We assume that the problem has been correctly formulated and implemented;
errors in the results can then be categorized as follows. There are systematic errors
associated with, for example, finite-size effects, interaction cutoff, and the numeri-
cal integration itself; these are an intrinsic part of the computer experiment and are
reproducible. There are errors due to inadequate sampling of phase space where,
especially near a thermodynamic phase boundary, or in the case of infrequently
occurring events, enough of the relevant behavior fails to be sampled; this is symp-
tomatic of poor experimental design. And finally there is statistical error due to
random fluctuations in the measurements; under normal circumstances this deter-
mines the degree of confidence that can be placed in the results. Only for errors of
the last kind is the usual statistical analysis applicable.

Consider a series of M measurements of some fluctuating property A in a system
at equilibrium. The mean value is

1
(4) = — > A, (4.2.1)
and if each measurement A, is independent, with variance

1
0?(A) = 22D (A — (A)" = (A7) — (A’ (4.2.2)

n

then the variance of the mean (A) is
1
o?((A)) = MO’Z(A) (4.2.3)

But if, as is usually the case in MD (and other) simulations, the assumed indepen-
dence of the A, is unwarranted, o%({A)) is liable to be underestimated because the
effective number of independent measurements is considerably less than M. How
the correlation between measurements affects the results can be seen by rewriting
the variance correctly as

1
52((A)) = MJZ(A)[l +23 0 - M/M)qsﬂ] (4.2.4)
n

¥
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where ¢, is the autocorrelation function

(A, Ao) — (A)?
(A%) — (A)?
A detailed error analysis would involve examining ¢,, but there is little need for
this in practice because a much simpler method is available based on block aver-

aging [fly89].
Assuming the A, to be correlated, if averages are evaluated over blocks of suc-

o = (4.2.5)

cessive values, then as the block size increases the block averages will be decreas-
ingly correlated; eventually, once the block length exceeds the (unknown) longest
correlation time present in the data, the block averages will be independent from a
statistical point of view. What is needed is a criterion for choosing the minimal nec-
essary block length: too short a block provides little improvement over the original
correlated data, too long a block reduces the number of block averages available
for reliable estimation of the variance of the final result.

A very straightforward scheme is based on a series of successive block sizes
b=1,2,4, ..., with the upper bound being set by the total size of the data set. For
each b the estimator for the variance can be shown to be

My,

a*((A)y) = ﬁ > (45— (A)) (4.2.6)
b= LT

where M), is the total number of blocks, Ag a typical block average, and (A),
the overall average. Whenever the current M, is odd, the last value is simply dis-
carded before doubling the block size. What should happen, assuming that the total
measurement period far exceeds the longest correlation time, is that the successive
02((A)b) increase until a plateau is eventually reached; the plateau value is the
result. In less than ideal situations where the measurement period is too short, or
barely adequate in length, the plateau will either not appear at all or will be very
narrow; in such cases the variance estimate is unreliable. When the method works
successfully the block size at the start of the plateau is an indication of the extent
to which the samples are correlated.

Energy

Energy measurements® are the simplest, and here we briefly examine both LJ and
soft-sphere systems. The initial state is an FCC lattice, so that N,, = 500. Leapfrog
integration is used; for the LJ system we use a cutoff r. = 2.2. The temper-
ature fluctuates, and in three dimensions we have (Ex) = 3(T')/2. Figure 4.1

& pr_04_1,pr_04_2
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Fig. 4.1. Density and mean-temperature dependence of energy for Lennard-Jones (solid
curves) and soft-sphere (dashed) systems, for densities 0.4—1.0.

shows the dependence of £ on p and (T') as measured in a series of runs that
include the following input data (the values of density and temperature are
varied):

deltaT 0.005
density 0.4
initUcell 5556
stepAvg 2000
stepEquil 4000
stepInitlzTemp 200
stepLimit 10000
temperature 0.4

For careful quantitative studies, the results should be examined closely when de-
ciding on the run length stepLimit and the equilibration period stepEquil.

In the microcanonical ensemble, thermodynamic quantities based on fluctuations
adopt a different form from the canonical ensemble. The most familiar such quan-
tity is the constant-volume specific heat Cy = (dE /9T )y. It is usually defined in
terms of energy fluctuations, namely (with kg = 1),

N 2
Cy = W((SE ) 4.2.7)
where (8E?) = (E?)—(E)?, but while this is appropriate in the canonical ensemble,
for MD we have (8E2) = 0. Instead, it can be shown [leb67] that the relevant
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Fig. 4.2. Density and temperature dependence of pressure for Lennard-Jones (solid
curves) and soft-sphere (dashed) systems, for densities 0.4—1.0.

fluctuations to consider are those of Ex or Ey individually (they are identical) and
that the specific heat is

3 AN, (BEX)\ !
=(1 - =Kl 42.8
Cy 2( 372 ) (42.8)

Either this directly measurable result or numerical differentiation of the E(T')
graph — strictly speaking, £ ({T')) — could be used for estimating Cy .

Equation of state

Pressure is obtained from the virial expression (2.3.8); while it can also be ex-
pressed in terms of momentum transferred across an arbitrary plane, there is little
reason to resort to such a definition that only uses information from a fraction of the
atoms and is therefore subject to larger fluctuations. The virial definition assumes
the presence of hard walls responsible for imposing the external pressure, but the
result is equally applicable in the case of periodic boundaries [erp77].

Pressure measurements for the runs described above are shown in Figure 4.2.
Negative pressure is an indication that the system is being held at too low a den-
sity, and in a sufficiently large system separation into distinct liquid (or solid) and
vapor phases occurs. A more extensive analysis of this kind would lead to the com-
plete equation of state [nic79]. In the LJ case, when a ‘real’ substance is being
modeled, the values of both £ and P can be corrected [vog85] to compensate for
the truncation at r. — as in (4.3.9).
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Table 4.1. Block-averaged estimates of o ((P)); b is the block size and M}, the number of
blocks.

b My, o((P))

1 16384 0.0012

2 8192 0.0017

4 4096 0.0023

8 2048 0.0031

16 1024 0.0039
32 512 0.0045
64 256 0.0046
128 128 0.0048
256 64 0.0048
512 32 0.0052
1024 16 0.0060
2048 8 0.0068
4096 4 0.0088

Finite-size effects are already relatively small at N,, = 500, at least for positive
pressure (and away from the critical point). For example, consider the LJ fluid at
p = 0.8 and T = 1. The result obtained in this case is P = 2.02, o (P) = 0.14,
based on a single average over 2000 timesteps. For the case where N,, = 2048, an
average over 4000 timesteps leads to the same P = 2.02, with o (P) = 0.08. Thus,
even this very rough comparison suggests that size dependence will normally only
be an issue if high-quality estimates are required.

The pressure measurements provide an opportunity to demonstrate the block
averaging method* for estimating the variance of the mean described earlier. Here
we consider the soft-sphere fluid with N, = 500, p = 0.8 and T = 1. The pressure
measurements are governed by the replacement input data

stepAvg 1
stepEquil 1000
stepLimit 17384

and the results are sufficient for 12 doublings of the block size starting from b = 1.
Table 4.1 shows the outcome of this analysis, and reveals that convergence occurs
at a block size of 32. The fact that a((P)) ~ 40 (P), the value at b = 1, should
serve as a reminder that closely spaced measurements are strongly correlated.

o pr_anblockavg (There are a few supplementary programs in the software package that are not described in
the text; this is one of them.)
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4.3 Structure

Radial distribution function

The fluid state is characterized by the absence of any permanent structure. There
are, nevertheless, well-defined structural correlations that can be measured exper-
imentally to provide important details about the average molecular organization
[mcq76, han86b]. The treatment of structural correlation (in the canonical ensem-
ble) begins with the completely general pair distribution function,

Ny (N, — 1)/eU<’1~~'Nm>/T dry---ry

pz / e VN IT gy oo r,

where the integral in the denominator is just the partition function (with kg = 1),
and the integral in the numerator differs only in that r; and r, are excluded from the
integration. In the case of spatially homogeneous systems, only relative separation
is meaningful, leading to a sum over atom pairs,

1%
g(r) = W<Z 8(r — r,j)> 4.3.2)

m

m

g(ri,n) = 4.3.1)

i<j

and if the system is also isotropic the function can be averaged over angles without
loss of information. The result is the radial distribution function g(r) — RDF for
short — a function that describes the spherically averaged local organization around
any given atom; g(r) plays a central role in liquid-state physics and all functions
that depend on the pair separation, such as potential energy and pressure, can be
expressed in terms of integrals involving g(r).

The definition of g(r) implies that pg(r) dr is proportional to the probability
of finding an atom in the volume element dr at a distance r from a given atom,
and (in three dimensions) 4mpg(r)r>Ar is the mean number of atoms in a shell
of radius r and thickness Ar surrounding the atom. The RDF is related to the
experimentally measurable structure factor S(k) by Fourier transformation — S (k)
is a key quantity in interpreting x-ray scattering measurements. The general result,
not assuming isotropy, is

Stk)y=1+p / g(r)e " dr (4.3.3)

and for isotropic liquids this simplifies to
in k
SK) = 1 +47p / Sl;;—rg(r)rz dr (4.3.4)
r

Equation (4.3.4) supplies an important link between MD simulation and the real
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world. The MD approach can, of course, provide the answer to any question about
structure, such as the nature of spatial correlations between atoms taken three at a
time; while this kind of information can prove useful in trying to understand the
behavior, comparison is impossible since the corresponding experimental data are
unobtainable.

From the definition of g () in (4.3.2) it is apparent that the RDF can be measured
[rah64, ver68] using a histogram of discretized pair separations. If /,, is the number
of atom pairs (i, j) for which

(n—DAr <r;; <nAr 4.3.5)
then, assuming that Ar is sufficiently small, we have the result’
Vh,
) = 4.3.6
8(r) 2 N2r2Ar (43.6)
where
Iy = (n — %)Ar 4.3.7)

If the RDF measurements extend out to a maximum range r, the required number
of histogram bins is ./ Ar. The two-dimensional version is

Ahy,
8rn) = ——5—— (4.3.8)

TN2r,Ar
The normalization factors ensure that g(r — oo0) = 1, although periodic boundaries
limit the range r, to no more than half the smallest edge of the simulation region,
with wraparound used in evaluating interatomic distances.

The RDF computation has much in common with the interaction calculation,
and the cell method can be used if r, is sufficiently small. Otherwise, all pairs
must be considered and this is the version® shown here (where M_PI denotes 7 );
quite accurate results can in fact be obtained from a relatively small number of
measurements, so that the overall computational cost is not excessive.

void EvalRdf ()
{
VecR dr;
real deltaR, normFac, rr;
int j1, j2, n; s

if (countRdf == 0) {
for (n = 0; n < sizeHistRdf; n ++) histRdf[n] = 0.;
}
deltaR = rangeRdf / sizeHistRdf; 10

F hp is Ny, /2 times the mean number of neighbors in the shell.
o pr_04_3
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for (j1 = 0; j1 < nMol - 1; j1 ++) {
for (j2 = j1 + 1; j2 < nMol; j2 ++) {
VSub (dr, mol[j1].r, mol[j2].r);
VWrapAll (dr);
rr = VLenSq (dr); Is
if (rr < Sqr (rangeRdf)) {
n = sqrt (rr) / deltaR;
++ histRdf[n];
}
} 20
}
++ countRdf;
if (countRdf == limitRdf) {
normFac = VProd (region) / (2. * M_PI * Cube (deltaR) *
Sqr (nMol) * countRdf); 2
for (n = 0; n < sizeHistRdf; n ++)
histRdf [n] *= normFac / Sqr (n - 0.5);
PrintRdf (stdout);
countRdf = 0;
} 30
}

In addition to computing the discretized version of the RDF for the current state
of the system, the above function also accumulates the average over a series of
such ‘snapshots’, as well as initializing the calculation and producing the final
output when sufficient data have been collected; the decision whether to initial-
ize or prepare the final summary is based on the value of countRdf. This is the
three-dimensional version of the computation; the changes for two dimensions are
minor.

New quantities introduced here are

real *histRdf, rangeRdf;
int countRdf, 1limitRdf, sizeHistRdf, stepRdf;

and the additional input data items are

NameI (limitRdf),
NameR (rangeRdf),
NameI (sizeHistRdf),
NameI (stepRdf),

Memory allocation is carried out in A1locArrays

AllocMem (histRdf, sizeHistRdf, real);
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and the measurement counter is initialized in SetupJob

countRdf = 0;

The addition to SingleStep to request RDF processing is

if (stepCount >= stepEquil &&
(stepCount - stepEquil) J,stepRdf == 0) EvalRdf ();

while the output function is simply

void PrintRdf (FILE *fp)
{

real rb;

int n;

fprintf (fp, "rdf\n");
for (n = 0; n < sizeHistRdf; n ++) {
rb = (n + 0.5) * rangeRdf / sizeHistRdf;
fprintf (fp, "%8.4f }8.4f\n", rb, histRdf[n]);
} 10
}

The RDF results shown here are obtained from soft-sphere runs that include the
following input data (other data items are taken from earlier case studies):

initUcell 888
limitRdf 100
rangeRdf 4.
sizeHistRdf 200
stepEquil 2000
stepInitlzTemp 200
stepLimit 17000
stepRdf 50
temperature 1.

An FCC initial state is used, so that N,, = 2048. Three density values are used,
namely, 0.6, 0.8 and 1.0. The results appearing in Figure 4.3 are those obtained
during the last 1000 timesteps of each run; the way in which structure emerges as
density increases is clearly visible.

For a simple monatomic fluid g(r) shows how, on average, the neighborhood
seen by an atom consists of concentric shells of atoms with well-defined radii. As
the density increases, these shells become distorted, an effect reflected in the RDF
by additional peaks that appear once the lattice structure of the nascent solid phase
begins to make its presence felt. The fact that in the liquid all correlation is lost
beyond a few atomic diameters confirms the absence of any long-range positional
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Fig. 4.3. Radial distribution function for soft spheres at densities 0.6—1.0.

order and suggests a picture in which atoms can regard their more distant neighbors
as a smeared-out continuum, a useful idealization when trying to construct simple
liquid models.

Once the RDF is known, estimates of the errors in the thermodynamic proper-
ties due to the interaction cutoff can be determined from the definitions of these
quantities in terms of g(r). For example, the error in the potential energy is

AEy = 2mp /OO gMu@r)r*dr (4.3.9)

and a related expression exists for the pressure [han86b]. Since g(r) ~ 1 at suffi-
ciently large r, the calculation can be simplified; in some cases the error can even
be evaluated analytically, such as for the LJ potential, where

1 1

Long-range order

The RDF primarily addresses the local structure, but gives little direct information
as to whether long-range crystalline order exists. The sharpness of the RDF peaks
and the presence of additional peaks at positions indicative of specific lattices pro-
vide indirect evidence that is better appreciated once the existence of crystalline
order has been established by other means.

Long-range order corresponds to the presence of lattice structure and is the quan-
tity underlying x-ray scattering measurements from crystalline materials. The local
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density at a point r can be expressed as a sum over atoms,

N, m

p(r)=Y 8(r—r) (4.3.11)

Jj=1
and its Fourier transform is simply

1 & —ik-r;
p(k) = N ;e i (4.3.12)
j=
In a calculation of |p (k)| designed to test for the presence of long-range order, k
should be chosen to be a reciprocal lattice vector of the ordered state; this can be
any linear combination of the vectors appropriate for the expected FCC lattice, so
we choose

2
k= T(l’ -1, 1 (4.3.13)

where [ is the unit cell edge. If the system is almost fully ordered |p(k)| =~ 1, but
in the disordered liquid state |p (k)| = O (Np, Y 2).

The function® for evaluating long-range order, assuming (for convenience) all
region edges to be the same length, is

void EvalLatticeCorr ()
{
VecR kVec;
real si, sr, t;
int n; s

kVec.x = 2. * M_PI * initUcell.x / region.x;

kVec.y = - kVec.x;

kVec.z = kVec.x;

sr = 0.; 10
si =0.;

DO_MOL {

t = VDot (kVec, mol[n].r);
sr += cos (t);
si += sin (t); 5
}
latticeCorr = sqrt (Sqr (sr) + Sqr (si)) / nMol;
F

One additional variable is introduced here,

real latticeCorr;

o pr_04_4
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Fig. 4.4. Time dependence of long-range order in soft-sphere systems that start in an
ordered state; the results are for densities 0.8—1.1.

This function is called prior to the call to PrintSummary and the output should
include the value of latticeCorr. No averaging over separate measurements is
included, but this could easily be added.

One point must be kept in mind when studying solidification in a finite system,
namely, that the best results will be obtained if the region size and shape allow
the formation of an integral number of unit cells along each lattice direction. Any
mismatch will introduce imperfections of one kind or another into the ordered state,
leading to a reduction in the apparent long-range order.

In Figure 4.4 we show how long-range order varies with time during the early
stages of runs begun in the ordered state; we use the same system as for the RDF
studies but without any initial temperature adjustment. The four density values
shown are between 0.8 and 1.1. At the larger densities a moderate to high degree of
order persists throughout the observation period (although this is not a guarantee
of what might happen over much longer times), whereas at the lowest density the
long-range order rapidly vanishes.

4.4 Packing studies

Local structure

There are many reasons for seeking information about local atomic organization
that is more detailed than the RDF can provide. In simple fluids the motivation is
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Fig. 4.5. The Voronoi subdivision for a small, random set of points in two dimensions;
the region boundaries are periodic.

to understand better how atoms are arranged, and what distinguishes the average
packing from the fully ordered crystalline state. In more complex systems the same
packing questions can be asked in order to gain more specific information about
molecular organization; for example, an estimate of the exposed surface of part of
a large molecule can be important for studies of chemical reactivity.

How to describe the spatial organization of what sometimes amounts to little
more than a random array of atoms is far from obvious. The most widely used
method is based on a Voronoi subdivision [hsu79, cap81, rap83, med90], in which
each atom is surrounded by a convex polyhedron constructed using certain pre-
scribed rules. The outcome of this construction process is the partitioning of space
into a set of polyhedra, with all points that are closer to a particular atom than
to any other belonging to its polyhedron. In this way it is possible to define the
neighborhood of an atom uniquely, and atoms can then be regarded as adjacent
if their polyhedra share a common face. The polyhedra themselves are also of
considerable interest since the interactions can influence their geometrical prop-
erties. Displaying an image of such a partitioning in three dimensions is not partic-
ularly informative, but in Figure 4.5 we show the corresponding two-dimensional
result (the name of Dirichlet is associated with this problem) for a random set of
points.

¥
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Voronoi subdivision

The Voronoi analysis will be carried out separately from the MD run® to demon-
strate how this kind of postprocessing is done in general; in view of the complexity
of the Voronoi analysis it is clearly desirable to keep it distinct from the simulation.
Every so often a snapshot containing sufficient information to reproduce the atomic
configuration is written to a disk file; this will provide the raw data for subsequent
analysis. The following line is added to main following the call to SingleStep,

if (stepCount }, stepSmap == 0) PutConfig ();

where stepSnap specifies the number of timesteps between snapshots and

NameI (stepSnap),

is added to the input data. The function PutConfig is described in §18.6.

Construction of Voronoi polyhedra is an exercise in computational geometry and
is by far the longest and most complex of the analysis programs used in these case
studies. There are various ways of dealing with this problem [bro78, fin79, tan83];
the version described here computes each polyhedron separately, but does the job
with a constant computational effort that is independent of the total number of
atoms. Periodic boundaries are assumed.

A concise summary of the method follows. The first step for each atom is to
generate a list of its neighbors ordered by distance. A large tetrahedron is then
constructed as a generous overestimate of the eventual polyhedron; portions of this
polyhedron will be removed in the course of the computation until what remains at
the end is the Voronoi polyhedron for that atom. The computation begins with the
initial tetrahedron, and carries out the following sequence of operations for each
neighbor in the list until none remains that could possibly alter the polyhedron
shape:

« compute the bisecting plane between the atom of interest and the neighbor;

« determine which polyhedron vertices lie on the far side of the plane;

« determine which edges and faces are cut by the plane;

» compute the locations of the intercepts of the plane with each cut edge;

«» update the description of each cut face and determine which faces are deleted
from the polyhedron entirely;

« add the new vertices and edges to the polyhedron, together with the new face;

« remove deleted vertices, edges and faces from the polyhedron description;

« locate the most distant vertices in the new and cut faces.

o pr_04_5
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When the process terminates, a test is made to ensure that nothing remains of the
initial faces; any remnants are symptomatic of a poor choice of initial polyhedron.
Measurements made on the resulting polyhedron include vertex, edge and face
counts, as well as the volume and surface area.

Assuming that a list of atoms to be tested during the construction of the poly-
hedron for a particular atom has already been prepared, the following function®
shows how the computation is organized.

void AnalVorPoly ()
{

int nf;

Sort (distSq, siteSeq, nTestSites); 5
InitVorPoly (;
for (curSite = 0; curSite < nTestSites; curSite ++) {

if (distSqlsiteSeql[curSite]] >= 4. * vDistSqMax) break;

siteB = testSites[siteSeqlcurSitel];

nvDel = 0; 10
nelNew = 0;

neDel = 0;

neCut = 0;

nfDel = 0;

nfCut = 0; 15
BisectPlane ();

if (nvDel 0) ProcDelVerts ();

>
if (neCut > 0) ProcCutEdges ();
if (nfCut > 0) ProcCutFaces ();
if (neNew > 0) ProcNewVerts (); 20
if (nfCut > 0) ProcNewFace ();
RemoveOld ();
if (nfCut > 0) FindDistVerts ();
}
for (nf = 0; nf < 4; nf ++) 25
if (facelnf].stat != 0) ErrExit (ERR_SUBDIV_UNFIN);
PolyGeometry ();
PolySize ();

The algorithm

The Voronoi construction task (in common with other exercises in computational
geometry) involves a great many details’. Because of the rather complex nature of
the algorithm these details can be handled in a variety of ways; this is one pos-
sible approach. For brevity we omit checks on array overflow and other potential

& pr_anvorpol
1 The details can be skipped without affecting the continuity of the discussion.

¥
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problems, although such safety measures should be included to help detect pro-
gramming or runtime errors.

The method for determining which atoms can contribute to a particular polyhe-
dron assumes that the region has been subdivided into cells. The atoms required
are obtained by first scanning a range of cells around the one containing the atom
under examination, then sorting the atoms found into ascending distance order and
placing the ordered list of atom indices in the array siteSeq (the call to Sort in
AnalVorPoly can use any standard sorting function — see §18.4). Here we only
scan neighbor cells, but the range could be extended.

void FindTestSites (int na)

{
VecR dr;
VecI cn;
int ¢, ¢x, cy, ¢z, i, ofx, ofy, ofz; s
cx = mol[na].inCell }, cells.x;
cy = (mol[na].inCell / cells.x) 7 cells.y;
cz = mol[na].inCell / (cells.x * cells.y);
nTestSites = 0; 10
for (ofz = -1; ofz <= 1; ofz ++) {
cn.z = (cz + ofz + cells.z) J cells.z;
for (ofy = -1; ofy <= 1; ofy ++) {
cn.y = (cy + ofy + cells.y) J cells.y;
for (ofx = -1; ofx <= 1; ofx ++) { 15
cn.x = (cx + ofx + cells.x) J cells.x;
¢ = VLinear (cn, cells) + nMol;
DO_CELL (i, c) {
VSub (dr, mol[na].r, mol[i].r);
VWrapAll (dr); 20
testSites[nTestSites] = i;
distSq[nTestSites] = VLenSq (dr);
++ nTestSites;
F}
F 25
}
}
F

Several arrays of structures are used in the program to describe the geometrical
details (edges, faces and vertices) of a polyhedron as it is being constructed. The
structures themselves are the following:

typedef struct {
int f[2], v[2], stat;
} Edge;

typedef struct { 5
real dist;
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int fPtr, stat, vFar;
} Face;

typedef struct { 10
int e, link, v;
} Flist;

typedef struct {
VecR pos; s
real distSq;
int e[3], stat;

} Vert;

A structure of type Edge is associated with each polyhedron edge. In each such
structure, the identities of the two vertices joined by the edge are stored in v and
the two faces that share the edge appear in f.

With each face is associated a circular linked list (a linked list whose final el-
ement points back to the start [knu68]) consisting of elements that are structures
of type F1ist that itemize, in order of appearance, the edges and vertices defining
the face boundary; these are stored in e and v, with 1ink providing the indices that
tie the list together. A structure of type Face is also associated with each face. The
element dist records the shortest distance from the atom to the plane of the face,
fPtris the index of the first item in the circular list and vFar identifies the furthest
vertex in the face from the atom.

In the structure of type Vert associated with each vertex, the vertex coordinates
are stored in pos, the squared distance of each vertex from the atom in distSq and
the identities of the three edges terminating at the vertex appear in e. To simplify
an already complex program, the data representation assumes that there will be
exactly three edges attached to each vertex; this excludes certain regular lattice
arrangements, as well as the extremely rare case of numerical degeneracy (one
candidate for the missing safety checks).

The structures also contain status indicators stat which, as the construction
progresses, show whether the elements still belong to the polyhedron, have been
deleted, or are about to change status. The reader will detect a certain amount of
redundancy in the information stored in the structures, but having it all readily
accessible simplifies the computation.

The polyhedron used to start the calculation is a tetrahedron. The following func-
tion specifies the vertex coordinates and initializes all the data needed to describe
the structure of the polyhedron during its subsequent modification.

void InitVorPoly ()
{
VecR w, vPosI[] = {{-1., -1., -1.}, {1., -1., -1.}, {0., 2., -1.},
{0., 0., 3.}};
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real r2, r6;

int m, n, ne, nf, nv, s,
vValr[] = {0,2,5,0,1,4,1,2,3,3,4,5},
eFacesI[] = {0,3,0,1,0,2,1,2,1,3,2,3},
eVertsI[] = {0,1,1,2,0,2,2,3,1,3,0,3},
eI[] = {0,1,2,4,3,1,2,3,5,5,4,0%},
vIi[(] = {0,1,2,1,3,2,0,2,3,0,3,1};

r2 = sqrt (2.) * rangeLim;
r6 = sqrt (6.) * rangeLim;
siteA = testSites[siteSeq[0]];

eLast = 5;
fLast = 3;
vLast = 3;
m = 0;

for (av = 0; nv <= vlast; nv ++) {
vert[nv].pos = mol[siteA].r;
VSet (w, r6 / 3., r2 / 3., rangelLim / 3.);
VMul (w, w, vPosI[nv]);
VVAdd (vert[nv].pos, w);
vert[nv].distSq = Sqr (rangeLim);
vert[nv].stat = 2;
for (n =0; n< 3; n++) {

vert[nv].e[n] = vValI[m];
++ m;

F}

}

vDistSqMax = vert[0].distSq;

for (ne = 0; ne <= elLast; ne ++) {
edge[ne] .v[0] = eVertsI[2 * ne];
edge[ne] .£[0] = eFacesI[2 * nel;
edge[ne] .v[1] = eVertsI[2 * ne + 1];
edge[ne] .f[1] = eFacesI[2 * ne + 1];
edge[ne] .stat = 3;

}

for (s = 0; s < MAX_FLIST - 1; s ++) flist[s].link = s + 1;

s = 0;
for (nf = 0; nf <= flLast; nf ++) {
face[nf] .vFar = vI[s];
face[nf].stat = 3;
face[nf].fPtr = s;
for (n =0; n< 3; n++) {
flistl[s].v = vI[s];
flist[s].e = eIls];
++ S5
¥
flist[s - 1].link = face[nf].fPtr;
}
fListLast = s - 1;

i
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A number of other arrays will be introduced at this point. Elements that have
been identified as deleted by the plane currently under consideration are listed in
vDel, eDel and fDel, while eCut and fCut identify edges and faces that are only
cut (intersected) by the current plane and eNew identifies new edges that are in the
process of being added to the polyhedron. Variables such as fListLast indicate
the last storage element in use.

Bisection of the line between the atom and one of its neighbors to produce a
possible new face for the polyhedron is carried out by the following function; the
coefficients of the plane equation are placed in the array fParam. Allowance is
made for periodic boundaries. The vector operations appearing in the function im-
plement the following results:

« the equation of the plane bisecting r;; is

(ri—r))-p= r? — ,»J?)/z 4.4.1)

or, more concisely, a - p = b;
« the equation of the edge joining vertices v, and v, is

p=p,+ (X(I’vz - pvl) (4.4.2)

where 0 <o < 1;
« the intercept between the plane and the edge, if there is one, occurs when

we L@ p) (4.4.3)

a-(py, — pv)

void BisectPlane ()
{
VecR dr, shift;
real d1, d2, d3;
int nv; s

dl = 0.;
fParamS = 0.;
VSub (fParamV, mol[siteB].r, mol[siteA].r);
VZero (shift); 10
VShiftAll (fParamV);
VVAdd (fParamV, shift);
d1 = VDot (fParamV, mol[siteA].r);
VAdd (dr, mol[siteB].r, shift);
fParamS = 0.5 * (VLenSq (dr) - VLenSq (mol[siteAl.r)); Is
for (av = 0; nv <= vlast; nv ++) {
if (vert[nv].stat != 0) {
d2 = VDot (fParamV, vert[nv].pos);
if (d1 !'=d2) {
d3 = (fParamS - d1) / (d2 - d1); 20
if (d3 > 0. & d3 < 1.) {
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vDel [nvDel] = nv;
++ nvDel;
vert[nv].stat = 1;

To handle periodic boundaries we have introduced

#define VShift(v, t) \
if (v.t >= 0.5 * region.t) shift.t -= region.t; \
else if (v.t < -0.5 * region.t) shift.t += region.t
#define VShiftAll(v) \
{Vshift (v, x); \ s
VShift (v, y); \

VShift (v, z);}

Several functions are called in succession from AnalVorPoly to deal with those
vertices, edges and faces of the polyhedron that are added, deleted or modified, as
aresult of including this new face. The first of these functions determines the edges
and faces affected by the deleted vertices.

void ProcDelVerts ()
{

int e, m, n, nv;

for (av = 0; nv < nvDel; nv ++) { 5
for (m=0; m < 3; m ++) {
e = vert[vDel[nv]].e[m];
-- edgele].stat;
if (edgele].stat == 2) {

eCut [neCut] = e; 10
++ neCut;
} else {
eDel [neDel] = e;
++ neDel;
F Is

for (n = 0; n<2; n++) {
if (faceledgele].f[n]].stat == 3) {
fCut [nfCut] = edgelel.f[n];
++ nfCut;
faceledgele] .f[n]].stat = 2; 20
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The next function deals with the edges that have been cut by the plane; the inter-
section points will become vertices of the polyhedron.

void ProcCutEdges ()

{
VecR dr;
real d, dt1, dt2;
int nd, ne, vtl, vt2; 5

for (ne = 0; ne < neCut; ne ++) {
if (edgeleCut[nel]].stat == 2) {
edge [eCut [ne]].stat = 3;
vtl = edgeleCut[nel].v[0]; 10

vt2 = edgeleCut[ne]].v[1];

dtl = VDot (fParamV, vert[vtl].pos);

dt2 = VDot (fParamV, vert[vt2].pos);

if (vert[vtl].stat == 1) nd = 0;

else if (vert[vt2].stat == 1) nd = 1; Is
++ vLast;

vert[vLast].stat = 2;

vert[vLast].distSq = 0. ;

d = (fParamS - dt1) / (dt2 - dt1);

VInterp (vert[vLast].pos, d, vert[vt2].pos, vert[vtl].pos); 20
VSub (dr, vert[vLast].pos, mol[siteA].r);

vert[vLast].distSq = VLenSq (dr);

edge [eCut [ne]].v[nd] = vLlast;

vert[vLast].e[0] = eCut[ne];

vert[vLast].e[1] =
vert[vLast].e[2] = 0;

|
(o)

25

}
}
F
Here,

#define VInterp(vl, s2, v2, v3) \
VSSAdd (v1, s2, v2, 1. - (s2), v3)

#define VSSAdd(v1, s2, v2, s3, v3) \
(vl).x = (s2) * (v2).x + (s3) * (v3).x, \

The faces cut by the plane are now examined; if a face is not completely eliminated,
its lists of boundary edges and vertices are updated to account for the changes.

void ProcCutFaces ()
{

int faceGone, nf, s, sl1, s2, s3, s4, v1l, v2, vDelCount;

eLastP = eLast; s
++ fLast;
for (nf = 0; nf < nfCut; nf ++) {

b
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s = face[fCut[nf]].fPtr;
faceGone = 0;
while (vert[flist[s].v].stat != 2 && ! faceGone) {
s = flist[s].link;
if (s == face[fCut[nf]].fPtr) faceGone = 1;
}
if (faceGome) {
fDel [nfDel] = fCut[nf];
face[fCut[nf]].stat = 1;
++ nfDel;
} else {
face[fCut[nf]].stat = 3;
face[fCut [nf]].fPtr = s;

for (s1 = s, 82 = flist[s1].link; vert[flist[s2].v].stat

s2 = flist[s1].1link) s1 = s2;
vDelCount = 1;

for (s3 = s2, s4 = flist[s3].link; vert[flist[s4].v].stat != 2;

s4 = flist[s3].link) {
++ vDelCount;
s3 = s4;
F
vl = edgel[flist[s1].e].v[0] + edgelflist[s1].el.v[1] -
flist[s1].v;
v2 = edgel[flist[s3].e].v[0] + edgel[flist[s3].e].v[1] -
flist[s4].v;
++ elLast;
flist[s3].v = v2;
if (vDelCount == 1) {
++ fListLast;
s = fListLast;
flist[s1].link = s;
flist[s].link = s2;
flist([s].v = vi1;
flist[s].e = elLast;
} else {
flist[s2].v = vi1;
flist[s2].e = elast;
if (vDelCount > 2) flist[s2].link = s3;
F
edgeleLast].v[0] = vi1;
edgel[elLast].v[1] = v2;
edge[eLast] .f[0] = fCut[nf];
edgeleLast].f[1] = fLast;
edge[elLast].stat = 2;
eNew[neNew] = elast;
++ nelew;

A little extra bookkeeping is required for the newly added vertices,

]
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void ProcNewVerts ()
{

int ne, v;

for (ne = 0; ne < nelNew; ne ++) { s
if (eNew[ne] > eLastP) {

v = edgeleNew[ne]].v[0];
if (vert[v].e[1] == 0) vert[v].e[1]
else vert[v].e[2] = eNew[ne];
v = edge[eNew[ne]].v[1]; 10
if (vert[v].e[1] == 0) vert[v].e[1] eNew[ne];
else vert[v].e[2] = eNewl[ne];

eNew[ne] ;

}
}
} 15

and likewise for new faces,

void ProcNewFace ()
{

int e, n, ne, v;

for (n = 0; n < neNew; n ++) { 5
++ fListLast;
if (n == 0) {
e = eNew[0];
face[fLast].fPtr = fListLast;
v = edgele].v[0]; 10
} else {
ne = 1;
for (e = eNew[nel; edgele].v[0] != v && edgele].v[1] != v ||
edgele].stat == 3; e = eNew[ne]) ++ ne;
} 15
flist[fListLast].v = v;
v = edgele] .v[0] + edgele].v[1] - v;
flist[fListLast].e = e;
edge[e].stat = 3;
} 20
face[fLast].stat = 3;
flist[fListLast].link = face[fLast].fPtr;
face[fLast].dist = 0.5 * sqrt (distSql[siteSeql[curSite]l);
F

Deleted vertices, edges and faces are then flagged appropriately.

void RemoveOld ()
{

int n;
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for (n = 0; n < nvDel; n ++) vert[vDel[n]].stat = 0; 5
for (n = 0; n < neDel; n ++) {
if (edgel[eDel[n]].stat == 1) edgel[eDel[n]].stat = 0;
}
for (n = 0; n < nfDel; n ++) face[fDel([n]].stat = 0;

Keeping track of the most distant vertex in each face, as well as the furthest
vertex of all, simplifies the task of determining whether a given plane could become
a face of the polyhedron. This is done as follows.

void FindDistVerts ()
{

real dd;

int nf, s;

fCut [nfCut] = flast;
for (af = 0; nf < nfCut + 1; nf ++) {
if (facel[fCut[nf]].stat != 0) {
s = face[fCut[nf]].fPtr;
dd = vert[flist[s].v].distSq; 10
face[fCut[nf]].vFar = flist[s].v;
for (s = flistl[s].link; s != face[fCut[nf]].fPtr;
s = flist[s].link) {
if (vert[flist[s].v].distSq > dd) {
dd = vert[flist[s].v].distSq; Is
face[fCut[nf]].vFar = flist[s].v;
}
}
}
} 20
vDistSqMax = O0.;
for (nf = 0; nf <= fLast; nf ++) {
if (face[nf].stat != 0 && vDistSqMax < vert[face[nf].vFar].distSq)
vDistSqMax = vert[face[nf].vFar].distSq;

Evaluation of the geometrical properties of the current polyhedron is as follows.
Here, the four quantities computed and stored in the array polyGeom are the num-
bers of vertices, edges, faces, and the average number of edges per face. These
results are subsequently combined (in main) with those from other polyhedra to
produce averages for the entire system.

void PolyGeometry ()
{

int n, ne, nf, nv, s;

for (n = 0; n < 4; n ++) polyGeom[n].val = 0.; 5
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for (nv = 0; nv <= vlast; nv ++) {
if (vert[nv].stat != 0) ++ polyGeom[0].val;

}
for (ne = 0; ne <= elast; ne ++) {

if (edgelne].stat != 0) ++ polyGeom[1].val; 10
}

for (nf = 0; nf <= flLast; nf ++) {
if (face[nf].stat != 0) {
++ polyGeom[2].val;
++ polyGeom[3].val; Is
for (s = flist[face[nf].fPtr].link; s != face[nf].fPtr;
s = flist[s].1link) ++ polyGeom[3].val;
}
}
polyGeom[3].val /= polyGeom[2].val; 20

The surface area and volume of the polyhedron are computed by the function
below; these results will also be used in producing averages. The area of a single
(convex) face f of the polyhedron is just the sum of the areas of the triangles into
which it can be decomposed,

A= %ZK'}'H —r) X (ri —n)| (4.4.4)
where the r; are the vertices of f, and the volume is given by the sum over faces

V=1 diAy (4.4.5)
n

where d is the distance of the face from the atom position.

void PolySize ()

{
VecR ca, d1, d2, d3;
real a;
int nf, s, vl, v2; 5

polyArea.val = 0.;
polyVol.val = 0.;
for (nf = 0; nf <= flLast; nf ++) {
if (face[nf].stat != 0) { 10
s = face[nf].fPtr;
vl = flist[s].v;
s = flist[s].link;
v2 = flist[s].v;
VSub (d1, vert[v2].pos, vert[vi].pos); 15
VZero (ca);
for (s = flistl[s].link; s != facel[nf].fPtr; s = flist[s].link) {
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v2 = flist[s].v;
VSub (d2, vert[v2].pos, vert[vl].pos);
VCross (d3, di, d2); 20
VVAdd (ca, d3);
dl = d2;
F
a = VLen (ca);
polyArea.val += a / 2.; 2
polyVol.val += face[nf].dist * a / 6.;

Here, VCross evaluates the vector cross product,

#define VCross(v1l, v2, v3) \
(vl).x = (v2).y * (v3).z - (v2).z * (v3).y, \
(vl).y = (v2).z * (v3).x - (v2).x * (v3).z, \
(vi).z = (v2).x * (v3).y - (v2).y * (v3).x

A list of the (global) variables used in the program follows.

typedef struct {
VecR r;
int inCell;

} Mol;

Mol *mol;

Edge *edge;

Face *face;

Flist *flist;

Vert *vert; 10

VecR *r, fParamV, region;

VecI cells;

real *distSq, cellRatio, eulerSum, fParamS, fracPolyVol, rangeLim,
regionVol, timeNow, vDistSqMax;

Prop polyGeom[4], polyArea, polyVol; Is

int *celllList, *eCut, *eDel, *eNew, *fCut, *fDel, *siteSeq,
*testSites, *vDel, blockNum, blockSize, curSite, eLast, eLastP,
fLast, fListLast, nCell, neCut, neDel, neNew, nfCut, nfDel, nMol,
nTestSites, nvDel, runld, siteA, siteB, stepCount, vLast;

FILE *fp; 20

The variables blockNum, blockSize, runId and fp are needed for dealing with
the snapshot file. Several parameters are used to set the sizes of the arrays, namely,

#define MAX_EDGE 200
#define MAX_FACE 50
#define MAX_FLIST 500
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#define MAX_ITEM 50
#define MAX_VERT 200

il

The values are larger than necessary (for simplicity, the storage used by deleted

items is not reused), but if safety checks are added to the program all risk of array

overflow can be avoided.

Array allocation is catried out by a new version of A1locArrays.

void AllocArrays ()
{

AllocMem (mol, nMol, Mol);

AllocMem (distSq, nMol, real);

AllocMem (siteSeq, nMol, int);

AllocMem (testSites, nMol, int);

AllocMem (cellList, VProd (cells) + nMol, int);

AllocMem (edge, MAX_EDGE, Edge);

AllocMem (face, MAX_FACE, Face);

AllocMem (flist, MAX_FLIST, Flist);

AllocMem (vert, MAX_VERT, Vert);

AllocMem (eCut, MAX_ITEM, int);

(similarly eDel, eNew, fCut, fDel, vDel)

F

The main program for the Voronoi calculation follows. Configurations are read
by GetConfig (described in §18.6) while the input snapshot file is selected by call-
ing SetupFiles (§18.7); the value of runId must be supplied when the program
is run. The function SubdivCells (not shown) contains code borrowed from the
cell version of ComputeForces (§3.4) that assigns atoms to cells and also saves

the cell numbers in mol1[].inCell.

int main (int argc, char **argv)
{

int n, na;

runld = atoi (argv[1]);
cellRatio = 0.5;
SetupFiles ();
blockNum = -1;
while (GetConfig () {
regionVol = VProd (region);
SubdivCells ();
rangelim = region.x;
PropZero (polyArea);
PropZero (polyVol);
for (n = 0; n < 4; n ++) PropZero (polyGeom[n]);
for (na = 0; na < nMol; na ++) {
FindTestSites (na);
AnalVorPoly ();
PropAccum (polyArea);
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PropAccum (polyVol); 20
for (n = 0; n < 4; n ++) PropAccum (polyGeom[n]);

}

fracPolyVol = polyVol.sum / regionVol;

PropAvg (polyArea, nMol);

PropAvg (polyVol, nMol); 25

for (n = 0; n < 4; n ++) PropAvg (polyGeom[n], nMol);

polyArea.sum /= pow (regionVol, 2./3.);

polyArea.sum2 /= pow (regionVol, 2./3.);

polyVol.sum /= regionVol;

polyVol.sum2 /= regionVol; 30

eulerSum = polyGeom[0].sum + polyGeom[2].sum - polyGeom[1].sum;

(print the results) ...
}
}

The first call to GetConfig calls AllocArrays, and also the following function
to set the cell size; the prescription is somewhat arbitrary, with the parameter
cellRatio used to adjust the number of cells per edge to ensure that the full
complement of neighbors is found.

void SetCellSize ()
{
VSCopy (cells, cellRatio, region);
nCell = VProd (cells);
F} 5

Two quantities evaluated in main serve as checks on the computation: the sum
of the volumes of the polyhedra must of course be identical to the region volume,
otherwise it is likely that insufficient neighbors are being examined, and the value
of eulerSum should be exactly 2, a familiar result from graph theory.

Results
The sample results shown Table 4.2 are obtained using soft-sphere systems with
864 atoms, started at T = 1 but without any temperature adjustment, and at

three different densities. Three sets of configurations are recorded at intervals of
1000 timesteps for use in the analysis (starting after 2000 timesteps). To allow
comparison with the behavior of random systems, results from arrays of 4000 to-
tally random points (generated by a special version of InitCoords shown in §3.6)
are included. The trends in the results are clearly visible.

4.5 Cluster analysis

Cluster algorithm

Cluster formation in fluids is a subject of frequent interest, both because clustering
is a real physical process (see also §9.6) and because some models attribute special
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Table 4.2. Properties of Voronoi polyhedra for soft-sphere systems and for random sets of
points; results shown are mean numbers of vertices n,, edges n, and faces n s per poly-
hedron, and mean number of edges per face n.r; three sets of results are shown for each
case.

density ny ne nf Ref

1.0 24.199 36.299 14.100 5.145
24.194 36.292 14.097 5.146
24.259 36.389 14.130 5.147

0.8 25.310 37.965 14.655 5.173
25477 38.215 14.738 5.177
25.347 38.021 14.674 5.174

0.6 25.819 38.729 14.910 5.183
25.843 38.764 14.921 5.182
25.750 38.625 14.875 5.180

random 27.005 40.508 15.502 5.187
27.021 40.532 15.511 5.189
27.067 40.600 15.534 5.189

properties to clusters. In either case it is important to be able to identify atoms
belonging to common clusters and to measure various cluster properties. Here we
focus on clusters appearing in instantaneous snapshots of a soft-sphere system, but
a deeper analysis might also need to consider time-dependent behavior, such as
cluster growth rates, or cluster lifetimes in systems where attractive interactions
actually bind atoms together.

Different criteria are available for determining whether an atom belongs to a
cluster. One option is to consider the energy that binds (assuming interactions with
an attractive component) an atom to other atoms already in the cluster. An alter-
native method requiring less computation (which, for attractive pair potentials, is
essentially the same) is to base the criterion on the interatomic distance, so that if
atom i is already in the cluster, atom j will also be included if r;; < r4, where r4
is the chosen threshold separation; we will adopt this definition here. The value of
rq would typically be based on some energy condition, but this does not affect the
technique. If there is no physical reason for preferring a particular value of r,, the
sensitivity of the results to a change in r,; should of course be examined.

This analysis® will also be carried out separately from the MD run; the user will
want to try different r; values, so it is more sensible to have the MD configurations
available for immediate analysis. The configuration data are input to the analysis

& pr_anclust
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program in the same way as in the earlier Voronoi study. Cluster construction be-
gins by determining those atom pairs that are separated by less than r;; the function
used for this is derived from BuildNebrList (§3.4), with a cell size (use of cells
is optional) based on the variable rClust that corresponds to ry.

void BuildClusters ()
{
real rrClust;

rrClust = Sqr (rClust); 5

if (VLenSq (dr) < rrClust) AddBondedPair (j1, j2);

The tasks of adding atoms to clusters and merging existing clusters that are found
to share a common member are carried out by AddBondedPair below. Two struc-
tures are defined here, one a modified version of Mo1, the other to help organize the
cluster work,

typedef struct {
VecR r;
int inClust;

} Mol;

typedef struct {
int head, next, size;
} Clust;

In Mol, inClust records the cluster to which an atom belongs. In Clust, head
points to the first atom of the cluster, next is a pointer from one atom in the cluster
to the next (atoms belonging to a cluster are associated using a linked list) and
size eventually contains the number of atoms in the cluster. Tracing the detailed
logic of this function is left as an exercise for the reader.

void AddBondedPair (int j1, int j2)

{
int cBig, cSmall, m, mp, ncl, nc2;
ncl = mol[j1].inClust; 5
nc2 = mol[j2].inClust;

if (ncl < 0 && nc2 < 0) {
mol[j1].inClust = nClust;
mol[j2].inClust = nClust;
clust[nClust].size = 2; 10
clust[nClust].head = ji1;
clust[j1] .next = j2;
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clust[j2] .next = -1;

++ nClust;

else if (mol[j1].inClust < 0) {
mol[j1].inClust = nc2;

clust[j1] .next = clust[nc2].head;
clust[nc2] .head = ji;

++ clust[nc2].size;

else if (mol[j2].inClust < 0) {
mol[j2].inClust = ncl;

clust[j2] .next = clust[ncl].head;
clust[nc1].head = j2;

++ clust[ncl].size;

else {

if (ncl != nc2) {

cBig = (clust[ncl].size > clust[nc2].size) 7 ncl

cSmall = ncl + nc2 - cBig;
for (m = clust[cSmall].head; m >= 0; m
mol[m].inClust = cBig;
mp = m;
}
clust [mp] .next = clust[cBig].head;
clust[cBig] .head = clust[cSmall].head;

clust[cBig].size += clust[cSmall].size;

clust[cSmall].size = 0;
}

clust[m] .next) {

Prior to starting cluster construction a little preparation is required.

void InitClusters ()
int n;

DO_MOL mol[n].inClust = -1;
nClust = 0;

After the work is complete the clusters can be reindexed to remove
to those clusters that were absorbed by others during construction.

void CompressClusters ()
int j, m, nc;

nc = 0;
for (j = 0; j < nClust; j ++) {

if (clust[j].size > 0) {
clust[nc].head = clust[j].head;
clust[nc].size = clust[j].size;

il
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for (m = clust[nc].head; m >= 0; m = clust[m].next) 10
mol[m].inClust = nc;
++ nc;
}
}
nClust = nc; 15

}

The arrays and variables used here include

Mol *mol;
Clust *clust;
VecR region;
VecI cells;
real rClust, timelNow; 5
Prop cSize;
int *cellList, bigSize, blockNum, blockSize, nCellEdge, nClust,
nMol, nSingle, runld, stepCount;
FILE *fp;

All the arrays used to hold cluster data are of size nMol, to allow for the extreme
situation where all atoms form their own clusters. The size of the cell array is based
on the number of cells per edge,

nCellEdge = region.x / rClust;

The array allocation function is

void AllocArrays ()
{

AllocMem (mol, nMol, Mol);

AllocMem (clust, nMol, Clust);

AllocMem (cellList, Cube (nCellEdge) + nMol, int); 5
F}

Once generation is complete the analysis of both geometric and spatial prop-
erties of the clusters can be carried out. Spatial properties of the clusters include
the radius of gyration and moments of the mass distribution; such studies involve
calculations similar to those used for polymer chains in §9.4 and will not be con-
sidered here. Other measurements are of a more geometrical flavor; as an example
the following function counts the number of isolated atoms, finds the cluster with
the most atoms and evaluates the mean and standard deviation of the cluster size
distribution.
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void AnalClusterSize ()
{

int cBig, nc, ncUse;

PropZero (cSize);
ncUse = 0;
cBig = 0;
for (nc = 0; nc < nClust; nc ++) {
cSize.val = clust[nc].size;
if (cSize.val > clust[cBig].size) cBig = nc;
if (cSize.val > 1) {
++ ncUse;
PropAccum (cSize);
}
}
bigSize = clust[cBig].size;
nSingle = nMol - cSize.sum;
if (ncUse > 0) PropAvg (cSize, ncUse);
}

il

10

More complex aspects, such as the number of ways in which atoms are linked into
a cluster, or the topology of the link network, can also be explored using the data

available.

The main program used in the cluster analysis is the following; the values of

runld and rClust must be supplied when the program is run.

int main (int argc, char **argv)
{
runld = atoi (argv[1]);
rClust = atof (argv[2]);
SetupFiles ();
blockNum = -1;
while (GetConfig ()) {
InitClusters ();
BuildClusters ();
CompressClusters ();
AnalClusterSize ();

printf ("/d d %d 7%.1f J,.1f\n", nSingle, nClust,

PropEst (cSize));

Measurements

10

Examples of cluster properties are shown in Table 4.3. The configuration data pro-
duced by the p = 0.8 Voronoi run are used here as well. The results of analyzing
three different realizations are shown for various values of the cluster threshold
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Table 4.3. Cluster properties for a soft-sphere fluid; results shown are numbers of isolated
atoms 7n; and multisite clusters 7., size of the largest cluster s, and mean cluster size (s);
three sets of results are shown for each r.

rd n; ne Sm (s)
1.02 344 148 25 3.5
313 147 26 3.7
340 152 23 3.4
1.04 175 117 165 59
173 90 280 7.7
183 121 98 5.6

1.06 80 39 636 20.1
84 23 712 339
89 48 623 16.1

1.08 38 4 817 206.5
31 10 808 83.3
36 13 796 63.7

1.10 16 3 843 282.7
16 2 846 424.0
14 4 840 212.5

separation r,;. Percolation theory can be used to explain the changing behavior as
rq is varied and also to inspire other kinds of cluster analysis [sta92].

4.1

4.2
4.3

4.4

4.5
4.6

4.6 Further study

Compare specific heats obtained from kinetic energy fluctuations and from
dE/dT.

Examine the errors in energy and pressure due to truncating the LJ interaction.
Study the soft-sphere equation of state near the melting transition; what kind
of transition occurs?

The possible existence of a hexatic phase in two-dimensional liquids — in
which there is long-range orientational order although no translational order —
has been explored using MD [abr86]; look into the subject.

Examine the difference between the LJ and soft-sphere RDFs.

Extend the structural analysis to consider correlations involving the coordi-
nates of three atoms at a time [vog84, bar88]; for example, study the distri-
bution of angles subtended by pairs of neighbors (suitably defined) of each
atom.

¥



4.7

4.8

4.9

4.6 Further study w

The Voronoi analysis is greatly simplified when applied to systems in two
dimensions (see Figure 4.5); generate and analyze some typical soft-disk
configurations.

Examine the cluster distributions for the two-dimensional case from the
point of view of percolation theory [hey89].

Apply cluster analysis to the LJ fluid; here, unlike soft spheres, the bind-
ing energy can be computed for each cluster, so that the study of cluster
formation takes on physical meaning.
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Dynamical properties of simple fluids

5.1 Introduction

In this chapter we encounter measurements of a type demonstrating some of the
unique capabilities of MD. Because the complete trajectories are available, it is no
more difficult to measure time-dependent properties, both in and out of equilib-
rium, than it is to measure thermodynamic and structural properties at equilibrium.
Here we concentrate on properties defined in terms of time-dependent correlation
functions at the atomic level — the dynamic structure factor and transport coeffi-
cients such as the shear viscosity are examples. Most of the analysis is incorporated
into the simulation program, but it would of course be possible (though extremely
storage intensive) to store the required trajectory data for subsequent processing.

5.2 Transport coefficients

Background

Transport coefficients describe the material properties of a fluid within the frame-
work of continuum fluid dynamics. Discrete atoms play no role whatsoever in the
continuum picture, but this does not seriously limit the enormous range of prac-
tical engineering applications of the continuum approach. The most familiar of
the transport coefficients are those applicable to simple fluids; these are the diffu-
sion coefficient, the shear and bulk viscosities and the thermal conductivity. Other
transport coefficients appear when dealing with more complex fluids, such as those
containing more than one species, or those with novel rheological behavior. In
many problems the transport coefficients are assumed to be experimentally deter-
mined constants, depending only on the temperature and density of the fluid, which
themselves are often assumed constant for a given problem, but in more complex
situations transport coefficients can depend on local behavior, an example being
the dependence of shear viscosity on the velocity gradient.
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While statistical mechanics focuses its attention on equilibrium systems, and
there is no corresponding general theory for systems away from equilibrium, lin-
ear response theory [mcq76, han86b] describes the reaction of an equilibrium sys-
tem to a small external perturbation and defines generalized ‘susceptibilities’ that
are expressed in terms of various equilibrium correlation functions. The trans-
port coefficients we will be discussing here can be expressed in a similar fashion
[hel60, mcq76], despite the fact that there are no obvious mechanical perturbations
corresponding to the concentration, velocity and thermal gradients associated with
the underlying transport processes; we will return to this subject in §7.4.

Each transport coefficient can be derived directly from one of the continuum
equations of fluid dynamics, such as the Navier—Stokes equation, after taking the
long wavelength (small k) limit of the Fourier transformed version of the equation.
The eventual result of the derivation is a direct relation between a macroscopic
transport coefficient and the time integral of a particular microscopic autocorrela-
tion function measured in an equilibrium system; such correlations are not directly
accessible to experiment.

The alternative, and from the historical point of view original, definition of a
transport coefficient, namely, the constant factor relating the response of a system
to an imposed driving force — such as the Newtonian definition of shear viscosity, or
Fourier’s law of heat transport — implies a nonequilibrium system. Measurements
based on these definitions are also feasible within the MD framework; there are,
however, certain technical details that must be addressed in order to carry out such
simulations, and we will deal with this approach in §7.3.

Diffusion
In a continuous system the diffusion coefficient D is defined by Fick’s law relating
mass flow to density gradient [mcq76],

pu=—DVp 5.2.1)

where u(r, t) is the local velocity and p(r, ) the local density or concentration, so
that the time evolution of p is described by the equation

ap
at

This result applies both to the diffusion of one species through another and to self-
diffusion within a single species. At the discrete-particle level p is just

= DV?p (5.2.2)

N

p(r.0) =Y 8(r—r;@®) (5.2.3)

j=1

¥
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Then, for large t — compared with the ‘collision interval’, a vague but intuitively
obvious period of time where continuous potentials are involved — we have the
Einstein expression [mcq76]

I B R
D= tl—l>r£lo 6Nmt <12_;[r1 (Z) - rj (0)]2> (524)

Note that for a finite system, ¢ cannot become too large because the allowed dis-
placements are bounded; eventually this asymptotic result will break down, so that
after reaching a plateau D will begin to drop to zero.

For periodic boundaries we need the ‘true’ atomic displacements r} (1), from
which the effects of wraparound have been removed. If we assume that the dis-
placement per timestep is small relative to the system size (as it always is), then
the two sets of coordinate components are related by

P (0) =1y (@) + nint([r} (¢ = A1) — 1 (O1/Ly) Ly (5.2.5)

where nint(x) is the nearest integer to x, and r} (0) =r;(0).In(5.2.4), (.. .) denotes
the average over a sufficiently large number of (in principle) independent samples.

The alternative Green—Kubo expression for D [mcq76] is based on the integrated
velocity autocorrelation function,

1 o0 Nm
D= m/() <; v, (1) - v.,(0)>a’t (5.2.6)

The two definitions, (5.2.4) and (5.2.6), can be shown to be completely equivalent.

A reliable estimate of D, as well as the other transport coefficients discussed
subsequently, requires that the trajectories be computed relatively accurately for as
long as the velocities remain correlated. As pointed out in §3.8, the main source of
uncertainty in the trajectories is the strongly repulsive potential and not the trunca-
tion error of the numerical method used for solving the differential equations. The
former is a real physical effect that influences the velocity correlations in a way
that mimics nature, so that the velocities remain correlated until overwhelmed by
the noise inherent in the trajectories.

Shear viscosity

The shear viscosity 7 is defined by the Navier—Stokes equation [mcq76]

p(Luv u=nV2u+<E+n>V(V-u)—VP (5.2.7)
ot 3" -
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Another transport coefficient also appears in this equation, the bulk viscosity 7,,
but it will not be studied here. Theory then leads to an expression analogous to the
Einstein diffusion formula (5.2.4) [hel60, mcq76] (however, see [all93a]), namely,

1 2
n= lim —— <z;[;mjrjx(t)v”(z) - ;mjrjx(O)vjy(O)] > (5.2.8)

X<

where ) _ , denotes a sum over the three pairs of distinct vector components (xy,
yz and zx) used to improve the statistics (and kg = 1). The formula shows how
n characterizes the rate at which some component (for example, y) of momentum
diffuses in a perpendicular (x) direction. While this result bears a certain formal
similarity to the diffusion expression, the conspicuous difference is that here a sin-
gle sum combines the contributions from all atoms, whereas with diffusion each
atom contributes individually — in short, the square of a sum as opposed to a sum
of squares. This expression turns out to be unusable with periodic boundaries be-
cause they violate the translational invariance assumed in the derivation [all93a].

The alternative Green—Kubo form, based on the integrated autocorrelation func-
tion of the pressure tensor, does not experience this problem. The definition is
[mcq76]

V o0
n=1= [ (D PPy ©0)dt (5.2.9)
37 Jy \ =
where
1
Py = V[Zm,v”v” +3 Zrijxff./y] (5.2.10)
j i#]

is a component of the pressure tensor (the negative of which is known as the stress
tensor). Evaluation of the second term in Py, can be carried out along with the force
computation, treating periodic boundaries in the normal way. For pair potentials
such as LJ, in which f;; = f(r;j)#;;, it is clear that P,, = P,.. Averaging over
vector components is again used to improve the statistics.

Thermal conductivity

The equation for heat transfer derived from Fourier’s law [mcq76], assuming that
the process involves thermal conduction alone and that there is no convection (im-
plying mass flow), is

IE ,
pCy—- = AV2E (5.2.11)
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and the resulting diffusion-like formula for the thermal conductivity is

. 1 2
b= t1—1>r<1>lo 6T2V ¢ <;[; rix(e;(t) — ;”,/‘x(o)ej(o)] > (5.2.12)
where
ej = smvi+3 ) ulry) —{e) (5.2.13)
i(#))

is the instantaneous excess energy of atom j, (e) is the mean energy and ) is a
sum over vector components. The periodic boundary limitation also applies here,
but there is an alternative form based on the integrated heat flux autocorrelation
function,

h=3m \ (S(t) - $(0))dr (5.2.14)
where?
1
S=V[Zejvj+%zrij(ﬁj-v,-)] (5.2.15)
J i#]j

5.3 Measuring transport coefficients

Direct evaluation of diffusion

We now turn to the practical side of studying the transport coefficients, beginning
with the simplest example, the diffusion coefficient, based on the Einstein defini-
tion (5.2.4). The computations will introduce a standardized framework that can
be used for all measurements extending over a series of timesteps, with each such
calculation including initialization, the actual process of making and accumulating
measurements at evenly spaced time intervals, and a final summary. An impor-
tant feature of these computations is that the samples are overlapped to provide
extra results; this calls for additional storage and bookkeeping. While the overlap
increases the correlation between successive samples, with similar consequences
for error estimates as described in §4.2, it can improve the quality of the results
without extending the duration of the run; ideally, overlap should be confined to
time intervals over which the correlation between measurements has decayed to a
comparatively small value.

The measurements entail following the atomic trajectories over a sufficient num-
ber of timesteps to obtain convergence of (5.2.4) to asymptotic behavior. New sets

+ The expression for S should also include a term proportional to (h) Y V) where (h) is the mean enthalpy
per atom, but, provided the total momentum is zero, the term can be dropped.
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R R R

time

Fig. 5.1. Use of overlapped data collection for time-dependent properties; the measure-
ments at any instant contribute to several sets of results (shown as shaded lines), with the
dashed lines marking the different time origins.

of diffusion measurements are begun at fixed time intervals, so that several sets of
measurements based on different time origins will be in progress simultaneously
because of the overlapped measurements — see Figure 5.1. To be more specific, a
total of nValDiffuse measurements contribute to the set used to produce a single
(unaveraged) estimate of D, there are nBuffDiffuse sets of data being collected
at any time (except for very early in the run), each occupying a separate storage
buffer, and measurements are made every stepDiffuse timesteps. The last of the
parameters governing the data collection is 1imitDiffuseAv, which specifies the
total number of individual estimates used to produce the averaged value of D. Each
set of measurements is carried out completely independently and they are com-
bined only when complete, with a variable count used to keep track of the number
of measurements currently in that set; this will be initialized in a particular way by
the function InitDiffusion (shown later) to ensure that the measurements are
evenly spaced. Given the values of these parameters, the total run length needed
for a given number of measurements can easily be determined; only complete sets
of results are used and partially filled buffers are discarded at the end of the run.

The functions appearing below measure the squared displacement of each atom
from each of several reference points (or origins), one per set, making allowance
for periodic boundaries, and produce a series of estimates that for sufficiently large
time intervals should converge to D. With each set of measurements, or buffer, is
associated a structure defined as

typedef struct {
VecR *orgR, *rTrue;
real *rrDiffuse;
int count;
} TBuf; 5

in which the array orgR stores the origins for the set of measurements, rTrue ac-
cumulates the components of the ‘true’ displacement of each atom after removing
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void EvalDiffusion ()
{

VecR dr;

int n, nb, ni;

for (nb = 0; nb < nBuffDiffuse; nb ++) {
if (tBuf[nb].count == 0) {
DO_MOL {
tBuf [nb] .orgR[n] = mol[n].r;
tBuf [nb] .rTrue[n] = mol([n].r;
F
}
if (tBuf[nb].count >= 0) {
ni = tBuf[nb].count;
tBuf [nb] .rrDiffuse[ni] = 0.;
Dpo_MOL {
VSub (dr, tBuf[nb].rTrueln], mol[n].r);
VDiv (dr, dr, region);
dr.x = Nint (dr.x);
dr.y = Nint (dr.y);
dr.z = Nint (dr.z);
VMul (dr, dr, region);
VAdd (tBuf[nb].rTrueln], mol[n].r, dr);

VSub (dr, tBuf[nb].rTruel[n], tBuf[nb].orgR[n]);

tBuf [nb] .rrDiffuse[ni] += VLenSq (dr);
}
}
++ tBuf [nb].count;
}
AccumDiffusion ();

}

void AccumDiffusion ()
{

real fac;

int j, nb;

for (nb = 0; nb < nBuffDiffuse; nb ++) {
if (tBuf[nb].count == nValDiffuse) {
for (j = 0; j < nValDiffuse; j ++)
rrDiffuseAv[j] += tBuf[nb].rrDiffusel[j];

o pr_05_1

i

any wraparound effects, rrDiffuse accumulates the mean-square displacements
and count is a counter. Similarly named structures, but with different contents,
will be encountered in subsequent time-dependent measurements where multiple
overlapped sets of results must also be collected.

The measurement functions® are as follows, where Nint (§18.2) performs the
nint(x) operation.
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tBuf [nb] .count = 0;
++ countDiffuseAv;

if (countDiffuseAv == limitDiffuseAv) {
fac = 1. / (NDIM * 2 * nMol * stepDiffuse *

deltaT * limitDiffuseAv);

for (j = 1; j < nValDiffuse; j ++)
rrDiffuseAv([j] *= fac / j;

PrintDiffusion (stdout);

ZeroDiffusion ();

}
}
}
F

@i

45

50

The functions that initialize (InitDiffusion) and reset (ZeroDiffusion) the
calculation and output the results (PrintDiffusion) follow. Note the values ini-
tially assigned to tBuf[].count that determine the spacing between measure-
ments: using negative initial values delays the start of data collection for each set

of measurements until the appropriate moment.

void InitDiffusion ()
{

int nb;

for (nb = 0; nb < nBuffDiffuse; nb ++)

tBuf [nb].count = - nb * nValDiffuse / nBuffDiffuse;

ZeroDiffusion ();

F
void ZeroDiffusion ()
{

int j;

countDiffuseAv = 0;

for (j = 0; j < nValDiffuse; j ++) rrDiffuseAv[j] = 0.;

}

void PrintDiffusion (FILE *fp)
{

real tVal;

int j;

fprintf (fp, "diffusion\n");
for (j = 0; j < nValDiffuse; j ++) {
tVal = j * stepDiffuse * deltaT;

fprintf (fp, "J/8.4f 78.4f\n", tVal, rrDiffuseAv[j]);

}
}
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Incorporating the above functions into the MD program requires several addi-
tions. The measurement function is called from SingleStep at regular intervals
after equilibration by

if (stepCount >= stepEquil &&
(stepCount - stepEquil) J, stepDiffuse == 0) EvalDiffusion ();

and program initialization (SetupJob) includes

InitDiffusion ();

The new quantities associated with these calculations are

TBuf *tBuf;

real *rrDiffuseAv;

int countDiffuseAv, limitDiffuseAv, nBuffDiffuse, nValDiffuse,
stepDiffuse;

the measurement parameters input to the program are

NameI (limitDiffuseAv),
NameI (nBuffDiffuse),
NameI (nValDiffuse),
NameI (stepDiffuse),

and the necessary arrays are allocated by AllocArrays (note the various array
sizes),

int nb;

AllocMem (rrDiffuseAv, nValDiffuse, real);

AllocMem (tBuf, nBuffDiffuse, TBuf);

for (nb = 0; nb < nBuffDiffuse; nb ++) { s
AllocMem (tBuf [nb].orgR, nMol, VecR);
AllocMem (tBuf[nb].rTrue, nMol, VecR);
AllocMem (tBuf [nb].rrDiffuse, nValDiffuse, real);

}

Diffusion from the velocity autocorrelation function

The alternative approach to measuring the diffusion coefficient is based on the inte-
grated velocity autocorrelation function (5.2.6). Considerations governing the use
of overlapped samples discussed previously also apply; the work itself is organized
in a similar way and even the new variables have corresponding names. Each data
collection buffer has an associated structure of type TBuf whose contents for this
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particular program are

@i

typedef struct {
VecR *orgVel;
real *acfVel;
int count;

} TBuf;

where orgVel stores a copy of the atom velocities at the start of the measure-
ment period and the autocorrelation function is constructed in acfVel. The gen-
eral technique described here forms the basis for studying the remaining transport

coefficients later in this section.
The calculation® is carried out by the following functions.

void EvalVacf ()
{

int n, nb, ni;

for (nb = 0; nb < nBuffAcf; nb ++) {
if (tBuf[nb].count == 0) {
DO_MOL tBuf [nb].orgVel[n] = mol[n].rv;
}
if (tBuf[nb].count >= 0) {
ni = tBuf[nb].count;
tBuf [nb] .acfVel[ni] = O0.;
DO_MOL tBuf [nb].acfVel[ni] +=
VDot (tBuf [nb].orgVel[n], mol[n].rv);
}
++ tBuf [nb].count;
}
AccumVacf ();
F

void AccumVacf ()
{

real fac;

int j, nb;

for (nb = 0; nb < nBuffAcf; nb ++) {
if (tBuf[nb].count == nValAcf) {
for (j = 0; j < nValAcf; j ++)
avAcfVel[j] += tBuf[nb].acfVell[j];
tBuf [nb] . count 0;
++ countAcfAv;
if (countAcfAv == limitAcfAv) {
fac = stepAcf * deltaT / (NDIM * nMol * limitAcfAv);
intAcfVel = fac * Integrate (avAcfVel, nValAcf);
for (j = 1; j < nValAcf; j ++) avAcfVell[j] /= avAcfVel[O];
avAcfVel[0] = 1.;

& pr_05_2
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PrintVacf (stdout);
ZeroVacf ();
}
}
} 40
}

The function Integrate (§18.4) computes the integral of its first argument using
a simple method such as the trapezoidal rule. Other required functions are

void InitVacf ()

{
int nb;
for (nb = 0; nb < nBuffAcf; nb ++) 5
tBuf [nb].count = - nb * nValAcf / nBuffAcf;
ZeroVacf ();
}
void ZeroVacf () 10
{
int j;

countAcfAv = 0;

for (j = 0; j < nValAcf; j ++) avAcfVel[j] = 0.; Is
}
void PrintVacf (FILE *fp)
{
real tVal; 20
int j;

fprintf (fp, "acf\n");
for (j = 0; j < nValdcf; j ++) {

tVal = j * stepAcf * deltaT; 25
fprintf (fp, "/8.4f 78.4f\n", tVal, avAcfVell[jl);

}

fprintf (fp, "vel acf integral: }8.3f\n", intAcfVel);

To incorporate the measurements into the MD program add the following state-
ment to SingleStep,

if (stepCount >= stepEquil &&
(stepCount - stepEquil) J, stepAcf == 0) EvalVacf ();

and a call to the initialization function from SetupJob

InitVactf ();
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The additional variables used are

TBuf *tBuf;
real *avAcfVel, intAcfVel;
int countAcfAv, limitAcfAv, nBuffAcf, nValAcf, stepAcf;

the measurement parameters input to the program are

NameI (limitAcfAv),
NameI (nBuffAcf),
NameI (nValAcf),
NameI (stepAcf),

and the array allocations (in A1locArrays) are

AllocMem (avAcfVel, nValAcf, real);
AllocMem (tBuf, nBuffAcf, TBuf);
for (nb = 0; nb < nBuffAcf; nb ++) {
AllocMem (tBuf[nb].acfVel, nValAcf, real);
AllocMem (tBuf[nb].orgVel, nMol, VecR); 5
}

Shear viscosity and thermal conductivity

These transport coefficient computations® are also based on the appropriate auto-
correlation functions and closely follow the treatment used to compute D from the
velocity autocorrelation. Indeed, to simplify matters we will assume that all three
transport coefficients are computed together and that identical parameters govern
the measurements. In order to compute the quantities involved in the autocorrela-
tion functions, certain additions must be made to the interaction calculations.

In the expressions for the pressure tensor (5.2.10) and heat current (5.2.15) used
in the definitions of the transport coefficients, sums over products such as r;;  f;; y,
rijx fijyvjy and e;v;, appear; these terms should be evaluated at the same time
as the forces. Additional arrays are needed to save sums of the form ), ;. fij,
and the values of e; separately for each atom; these two arrays are represented by
adding extra quantities’ to the definition of Mo1,

VecR rfl[3];
real en;

& pr_05_3
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The following additions to ComputeForces are required:

VecR wl[3];

int k;

DO_MOL {
mol[n].en = 0.; 5
for (k = 0; k < 3; k ++) VZero (mol[n].rflk]);

}

for (n = 0; n < nebrTabLen; n ++) {
if (rr < rrCut) { 10

mol[j1].en += uVal;
mol[j2].en += uVal;
for (k = 0; k < 3; k ++) w[k] = dr;
VScale (w[0], fcVal * dr.x); 15
VScale (w[1], fcVal * dr.y);
VScale (w[2], fcVal * dr.z);
for (k = 0; k < 3; k ++) {
VVAdd (mol[j1].rf[k], wlk]);
VVAdd (mol[j2].rf[k], wlkl); 20
}

New elements that are added to TBuf for the autocorrelation function computa-
tions are

VecR orgTherm, orgVisc;
real *acfTherm, *acfVisc;

additional quantities needed are

real *avAcfTherm, *avAcfVisc, intAcfTherm, intAcfVisc;

and the arrays are allocated (in A11locArrays) by

AllocMem (avAcfTherm, nValAcf, real);
AllocMem (avAcfVisc, nValAcf, real);
for (nb = 0; nb < nBuffAcf; nb ++) {
AllocMem (tBuf [nb].acfTherm, nValAcf, real);
AllocMem (tBuf[nb].acfVisc, nValAcf, real); s
}

The function EvalVacf is modified to incorporate the additional data collection:

VecR vecTherm, vecVisc;

VZero (vecVisc);
VZero (vecTherm);
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DO_MOL { 5
vecVisc.x += mol[n].rv.y * mol[n].rv.z + 0.5 * mol[n].rf[1].z;
vecVisc.y += mol[n].rv.z * mol[n].rv.x + 0.5 * mol[n].rf[2].x;
vecVisc.z += mol[n].rv.x * mol[n].rv.y + 0.5 * mol[n].rf[0].y;
mol[n].en += VLenSq (moll[n].rv);

VVSAdd (vecTherm, 0.5 * mol[n].en, mol[n].rv); 10
vecTherm.x += 0.5 * VDot (mol[n].rv, mol[n].rf[0]);
vecTherm.y += 0.5 * VDot (mol[n].rv, mol[n].rf[1]);
vecTherm.z += 0.5 * VDot (mol[n].rv, mol[n].rf[2]);

}
for (nb = 0; nb < nBuffAcf; nb ++) { Is
if (tBuf[nb].count == 0) {
tBuf [nb] .orgVisc = vecVisc;
tBuf [nb] .orgTherm = vecTherm;
} 20
tBuf [nb] .acfVisc[ni] = VDot (tBuf[nb].orgVisc, vecVisc);
tBuf [nb] .acfTherm[ni] = VDot (tBuf [nb].orgTherm, vecTherm);
}

The following additions are made to AccumVacf to evaluate the autocorrelation
integrals and transport coefficients:

if (tBuf[nb].count == nValAcf) {

for (j = 0; j < nValAcf; j ++) {

avAcfVisc[j] += tBuf[nb].acfVisc[j];

avAcfTherm[j] += tBuf[nb].acfTherm[j]; 5
}

if (countAcfAv == limitAcfAv) {

fac = density * stepAcf * deltaT / (3. * temperature * 10
nMol * limitAcfAv);

intAcfVisc = fac * Integrate (avAcfVisc, nValAcf);

for (j = 1; j < nValAcf; j ++) avAcfVisc[jl /= avAcfVisc[0];

avAcfVisc[0] = 1.;

fac = density * stepAcf * deltaT / (3. * Sqr (temperature) * Is
nMol * limitAcfAv);

intAcfTherm = fac * Integrate (avAcfTherm, nValAcf);

for (j = 1; j < nValAcf; j ++) avAcfTherm[j] /= avAcfTherm[O];

avAcfTherm[0] = 1.;

Finally, the function ZeroVacf requires

for (j = 0; j < nValdAcf; j ++) {
avAcfVisc[jl = 0.;
avAcfTherm[j] = 0.;

}
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and, in PrintVacf, the two quantities avAcfVisc[j] and avAcfTherm[j] are
added to the output loop and the integrated values intAcfVisc and intAcfTherm
are also output.

5.4 Space—-time correlation functions

Definitions
The experimental significance of time-dependent correlation functions is that spec-
troscopic techniques, of which neutron scattering is one example, actually mea-
sure the spectra of microscopic dynamical quantities. The MD approach provides
equivalent information directly from the trajectories, so that comparison with ex-
periment can be made by carrying out a Fourier analysis of the simulation results —
in a sense this amounts to performing the experiment on the model system. Such
correlation functions span the entire range of length and time scales, from slow
long-wavelength modes at the hydrodynamic limit, right down to the atomic level
[boo91].

To link the discrete atomistic picture with the continuum view of a system de-
scribed in terms of smoothly varying scalar and vector fields, a function such as the
number density (for a single species this is just the mass density in dimensionless
MD units) at a point r at time ¢ is expressed as a sum over atoms, as in (5.2.3),

p(r.t) = 8(r—r;@) (5.4.1)
J
In a practical sense, this defines the local density in terms of the average occupancy
of a small volume of space situated at » and measured over a short time interval.
There are of course fluctuations as atoms enter and leave the volume, but these can
be reduced by using larger volumes and/or longer time intervals. The definition
satisfies the obvious requirement that matter is conserved,

f,o(r, t)ydr =N, (5.4.2)

Space- and time-dependent density correlations are described by means of the
van Hove correlation function [han86b], defined as

G(r,t) = NL</ o(r' +r,tHp', 0) dr’> (5.4.3)

m

1

= N_<Z 8(r +r:(0) — rj(r))> (5.4.4)

where homogeneity is assumed in order to carry out the r’ integration in (5.4.3).

¥
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The double summation can be divided into two parts,

G(r,t) =Gy(r, 1)+ Gy(r, 1) (5.4.5)
where
1
Gy(r,1) = N—m<z S(r+r;(0) — r‘,»(t))> (5.4.6)

J
is the probability of an atom being displaced by a distance r during time ¢ and

G4(r, t) contains the remaining terms of the double sum. The t = 0 limits of G
and G, are

G,(r,0) =4(r) (5.4.7)
Gu(r,0) = pg(r) (5.4.8)
In the limits r — ocoort — 00, G; — 1/V and G; — p. There have been
attempts in the past to establish a functional relationship between G, and G4, but
these have been unsuccessful because of the wealth of dynamical detail that must

be discarded.
The Fourier transform of the density is

p(k, 1) = / p(r,t)e kT dr (5.4.9)
= ek (5.4.10)
J
and the intermediate scattering function is defined by
F(k,t) =/G(r, Ne kT dr (5.4.11)
1
= N—<p(k, 1p(—k, 0)) (5.4.12)

Note the connection to the static structure factor, F'(k, 0) = S(k). The dynamic
structure factor is defined as

1 o0 .
Sk, w) = —/ F(k,t)e'™ dt (5.4.13)
27 J_wo
and satisfies the sum rule
/ Sk, w)dw = S(k) (5.4.14)

If [ and t are the mean free path and collision time (suitably interpreted when
dealing with continuous potentials), then the regime k/ < 1 and wt < 1, or,
equivalently, wavelength >> [ and timescale > t, is where the behavior can be
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described by continuum fluid mechanics and the underlying atomic nature of the
fluid is totally hidden. The ability to use MD to study the behavior across a range
of scales provides the bridge between atomistic and macroscopic worlds.

While the local density conveys information about the distribution of atoms, it
is equally possible to examine local variations in the motion of the atoms. The
definition of the particle current (or momentum current for a single atomic species
using MD units) is [han86b]

w(r.t) =Y v;8(r —r;(0)) (5.4.15)
J

with Fourier transform

w(k,t) =Y vje k0 (5.4.16)
J

The spatial correlation functions of the components of the current vector are de-
fined as

2
Cop(k, 1) = ]l;—(na(k, Hmg(—k, 0)) (5.4.17)

For isotropic fluids, symmetry considerations lead to an expression in terms of
longitudinal and transverse currents (the directions are relative to k),

kokp kokp
Capll,t) = =L Lk, 1) + (85 — =55 )Cr (k. 1) (5.4.18)
and by setting k = kz we obtain
k2
Crk,t) = N—(nz(k, D (—k, 0)) (5.4.19)
k2
Crik, 0 = 5 (e (k, )7, (<K, 0) + 7y (k, )7, (— kK, 0)) (5.4.20)

m

The dynamic structure factor is related to the Fourier transform of the longitudinal
current

Sk, w) = %CL(k, ) (5.4.21)

In the small £ (continuum) limit, the form of S(k, w) is known [han86b]. The
function is of course symmetric in w, there are Lorentzian shaped Brillouin peaks
at w = Fv,k, where v, is the adiabatic speed of sound, and there is a Rayleigh peak
at w = 0. The width of each peak is proportional to k?; the Rayleigh peak width is
also proportional to the thermal diffusivity (A/pC p) and the Brillouin peak width is
proportional to the sound attenuation coefficient (a quantity expressible in terms of
transport coefficients and specific heats). Note that wraparound effects can occur
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for times t > L /v, where L is the region size; if significant, this sets an upper
bound to the timescales that can be examined, and hence a lower limit to w. The
values of k that can be examined are restricted to vectors with components that are
integer multiples of 27r/L, so that the larger the region, the smaller the k values
that can be reached.

Computational methods

The MD evaluation of S(k, w) is based on the Fourier transform of F (k, t). This
in turn can be expressed either as the Fourier transform of a discretized form of the
van Hove correlation function (5.4.11) — an extension of the method used in §4.3
for g(r) — or as the time correlation of the Fourier-transformed density (5.4.12).
The latter is clearly preferable since it requires a great deal less work. Evaluation
of p(k, t) is based directly on a sum over atoms, as in the study of long-range order
in §4.3 (but there only for a single & value). An alternative for very large systems
that is not explored here is to first evaluate a coarse-grained density function p (r, t)
based on a grid with suitable spatial resolution, and then use a discrete (preferably
fast-) Fourier transform to obtain p(k, ). Some of the detail is lost when grid
averages are used, but this affects results at short distances — typically of the order
of the grid spacing — while details of the more interesting long-range behavior are
preserved.

Further simplification is possible when studying isotropic systems, since the
function of interest is the spherically-averaged quantity S(k, @), and it is therefore
sufficient to consider k vectors in a very limited number of directions. Averaging
over several spatially equivalent directions will improve the statistics, so that if we
confine our attention to k vectors along the coordinate axes, the computation re-
quires evaluation of p(k, t) for the three vectors k = (k, 0, 0), (0, k£, 0) and
(0, 0, k). If we assume a cubic region, periodic boundaries restrict the allowed
values of £ to integer multiples of 27 /L.

Program details

We now turn to the details® of computing the density and current correlation func-
tions. The technique of overlapped measurements introduced in §5.3 is also used
here, and the variables involved in the data collection are organized in a similar
manner.

Because of the considerable amount of data that must be collected, we begin with
some remarks on how the computations and data are organized. The calculation
starts by evaluating the Fourier sums for the density and the three current compo-
nents — one longitudinal and two transverse — along each of the three k directions.

o pr_05_4
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The real and imaginary parts of these complex valued results are stored in the array
valST, with the index determined by a combination of the direction of k, the value
of k and the kind of quantity; there are four of these — the density and the three
current components — so storage must be provided for a total of 24 real numbers
for each value of k considered. The real parts of the contributions to the correla-
tion functions computed by a single call to EvalSpacetimeCorr are placed in the
array acfST that is part of the structure TBuf tailored for this calculation,

typedef struct {
real **acfST, *orgST;
int count;

} TBuf;

The first index of the two-dimensional array acfST specifies the kind of corre-
lation, namely the k value and whether the value corresponds to the real part of
Cp(k,t),Cyp(k,t) or F(k,t); the second index specifies the time offset. The num-
ber of different k values used is denoted by nFunCorr.

The contributions to all the (overlapped) correlation function measurements in
progress at a given instant are evaluated by the following function. A cubic region
shape and leapfrog integrator are assumed. The recursion relations

sinn® = 2cos O sin(n — 1)6 — sin(n — 2)6 (5.4.22)
cosnf = 2cosb cos(n — 1)0 — cos(n — 2)60 (5.4.23)

are used for evaluating sines and cosines of multiple angles.

void EvalSpacetimeCorr ()

{
real b, ¢, c0, c1, c2, kVal, s, s1, s2, w;
int j, k, m, n, nb, nc, ni, nv;

for (j = 0; j < 24 * nFunCorr; j ++) valST[j] = 0.;
kVal = 2. * M_PI / region.x;
po_MOL {

J=20;

for (k = 0; k < 3; k ++) { 10
for (m = 0; m < nFunCorr; m ++) {
if (m == 0) {
b = kVal * VComp (mol[n].r, k);

c = cos (b);
s = sin (b); Is
cO = c;
} else if (m == 1) {
cl = c;
sl = s;
c=2. %cO*cl-1.; 20

0
]
N

. % cO0 * s1;



}
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} else {
c2 = cl;
s2 = s1;
cl = c;
sl = s;

c=2. x cO * cl - c2;
2. ¥ c0 * s1 - s2;

}

valST[j ++] += mol[n].rv.x * c;
valST[j ++] += mol[n].rv.x * s;
valST[j ++] += mol[n].rv.y * c;
valST[j ++] += mol[n].rv.y * s;
valST[j ++] += mol[n].rv.z * c;
valST[j ++] += mol[n].rv.z * s;

valST[j ++] += c;
valST[j ++] += s;
}
}
}
for (nb = 0; nb < nBuffCorr; nb ++) {
if (tBuf[nb].count == 0) {
for (j = 0; j < 24 * nFunCorr; j ++)
tBuf [nb] .orgST[j] = valST[jl;
}
if (tBuf[nb].count >= 0) {
for (j = 0; j < 3 * nFunCorr; j ++)
tBuf [nb] .acfST[j] [tBuf [nb].count] = 0.;
Jj=0;
for (k = 0; k < 3; k ++) {
for (m = 0; m < nFunCorr; m ++) {
for (nc = 0; nc < 4; nc ++) {
nv =3 *m + 2;
if (nc < 3) {
w = Sqr (kVal * (m + 1));
-- nv;
if (nc == k) -- nv;
else w *= 0.5;
} else w=1.;
tBuf [nb] .acfST[nv] [tBuf [nb].count] +=
w * (valST[j] * tBuf[nb].orgST[j] +
valST[j + 1] * tBuf[nb].orgST[j + 1]);
Jjt=2
}
}
F
}
++ tBuf [nb].count;
}

AccumSpacetimeCorr ();

]
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Accumulating the averages is the task of the following function, where nValCorr
is the number of time offsets.

void AccumSpacetimeCorr ()
{

int j, n, nb;

for (nb = 0; nb < nBuffCorr; nb ++) { s
if (tBuf[nb].count == nValCorr) {
for (j = 0; j < 3 * nFunCorr; j ++) {
for (n = 0; n < nValCorr; n ++)
avAcfST[j] [n] += tBuf[nb].acfST[j][n];
} 10
tBuf [nb] .count = 0;
++ countCorrAv;
if (countCorrAv == limitCorrAv) {
for (j = 0; j < 3 * nFunCorr; j ++) {
for (n = 0; n < nValCorr; n ++) Is
avAcfST[j][n] /= 3. * nMol * limitCorrAv;
}
PrintSpacetimeCorr (stdout);
ZeroSpacetimeCorr ();
} 20
}
}
}

The additional variables are

TBuf *tBuf;

real **avAcfST, *valST;

int countCorrAv, limitCorrAv, nBuffCorr, nFunCorr, nValCorr,
stepCorr;

new input values,

NameI (limitCorrAv),

NameI (nBuffCorr),

NameI (nFunCorr),

NameI (nValCorr),

NameI (stepCorr), 5

and required array allocations (in A1locArrays),

AllocMem (valST, 24 * nFunCorr, real);
AllocMem2 (avAcfST, 3 * nFunCorr, nValCorr, real);
AllocMem (tBuf, nBuffCorr, TBuf);
for (nb = 0; nb < nBuffCorr; nb ++) {
AllocMem (tBuf[nb].orgST, 24 * nFunCorr, real); 5
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AllocMem2 (tBuf[nb].acfST, 3 * nFunCorr, nValCorr, real);
}

where AllocMem2 dynamically allocates a two-dimensional array a[n1] [n2] of

the specified type'
#define AllocMem2(a, nl, n2, t) \
AllocMem (a, nl, t *); \
AllocMem (a[0], nl * n2, t);

for (k = 1; k < n1; k ++) alk]

= alk - 1] + n2;

The calls to the functions that do the analysis (from SingleStep) and the initial-
ization (from SetupJob) are

if (stepCount > stepEquil && (stepCount - stepEquil)
stepCorr == 0) EvalSpacetimeCorr ();

InitSpacetimeCorr ();

Finally, the initialization and output functions are

void InitSpacetimeCorr ()

{

int nb;

for (nb = 0; nb < nBuffCorr; nb ++)

5
tBuf [nb] .count = - nb * nValCorr / nBuffCorr;
ZeroSpacetimeCorr ();

}

void ZeroSpacetimeCorr ()

{

int j, n;

countCorrAv = 0;

for (j = 0; j < 3 * nFunCorr; j ++) { 15
for (n = 0; n < nValCorr; n ++) avAcfST[j][n]
}

}

]
(e}

void PrintSpacetimeCorr (FILE *fp)
{

real tVal;
int j, k, n;

char *header[] = {"cur-long", "cur-trans", "density"};

25
fprintf (fp, "space-time corr\n");

F The allocation produces a one-dimensional array of size n1 x n2 together with an array of pointers containing
the offsets that allow it to be treated as doubly indexed.
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for (k = 0; k < 3; k ++) {

fprintf (fp, "J/s\n", header[k]);

for (n = 0; n < nValCorr; n ++) {
tVal = n * stepCorr * deltaT; 30
fprintf (fp, "%7.3f", tVal);
for (j = 0; j < nFunCorr; j ++)

fprintf (fp, " %8.4f", avAcfST[3 * j + k][nl);

fprintf (fp, "\n");

Correlation analysis

In order to evaluate S (k, w) in (5.4.13) for a given k at a total of n,, frequency values
(including @ = 0), it is necessary to collect n,, + 1 equally spaced measurements
of F(k,t). Since F (k, t) is an even function of ¢, these results are reflected about
t = 0, providing a total of 2n,, values — the first and last measurements are used
only once each. Then the Fourier transform is carried out using all 2n,, values (this
would normally be some power of two, to simplify the use of the FFT method),
and the discrete form of the function S(k, ) appears as the real part of the first
n, terms [pre92]. The current correlation functions are treated in the same way.
This analysis is carried out separately from the run itself; the program for doing
this, as well as for tabulating the normalized functions F(k, t)/F (k, 0), will now
be described.

The analysis program® shown below first averages the data produced by the run
and then either generates the normalized time-dependent correlations (and error
estimates, here unused) or the Fourier transforms. The program also demonstrates
a general approach to organizing analysis in which only selected data are extracted
from the job output file based on the headings accompanying the data. Whether the
real-space or Fourier version of the program is run depends on doFourier, and for
the latter, a windowing function [pre92] is applied if doWindow is set; these options
are specified on the command line when the program is run, as is the amount of
early data to skip, and the name of the file containing a full copy of the program
output that is to be processed. Cutoffs for limiting the output are built into the
program (but could also be added to the command line if desired).

A complex data type is introduced here

typedef struct {
real R, I;
} Cmplx;

& pr_anspcor
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#define CSet(a, x, y) \ 5
a.R = x, \
a.I =y

The macro NameVal (§18.5) is used in locating a selected data item from near
the start of the data filef, while the function FftComplex (§18.4) performs a fast
Fourier transform (FFT) and overwrites the original data with the result (the length
of the processed array must be a power of 2).

#define BUFF_LEN 1024
char *header[] = {"cur-long", "cur-trans", "density"},
*txtCorr = "space-time corr';

int main (int argc, char **argv) 5
{
Cmplx *work;
real *corrSum[3], *corrSumSq[3], damp, deltaT, deltaTCorr,
omegaMax, tMax, w, X;
int doFourier, doWindow, j, k, n, nData, nFunCorr, nSet, nSetSkip, 10
nv, nValCorr, stepCorr;
char *bp, *fName, buff[BUFF_LEN];
FILE *fp;

n=1; Is

if (-- argc < 1 || ! stremp (argv[1], "-h")) PrintHelp (argv[0]);

doFourier = 1;

doWindow = 0;

nSetSkip = 1;

while (-- argc >= 0) { 20
if (! strcemp (argv[n], "-t")) doFourier = 0;
else if (! stremp (argv[n], "-w")) doWindow
else if (! stremp (argv[n], "-s")) nSetSkip

1;
atoi (argv[n] + 2);

else {
fName = argv([n]; 2
break;
}
++ n;
}
if (argc > 0) PrintHelp (argv[0]); 30
omegaMax = 10.;
tMax = 5.;

if ((fp = fopen (fName, "r")) == 0) {

printf ("no file\n");

exit (0); 35
}
while (1) {

bp = fgets (buff, BUFF_LEN, fp);

T The file being processed begins with a copy of the input data used for the run; this is terminated by a line start-
ing with a ‘-’ character, denoted here by CHAR_MINUS. Several standard C file and character-string functions
are used in this program.
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if (*bp == CHAR_MINUS) break;
NameVal (deltaT);
NameVal (nFunCorr);
NameVal (nValCorr);
NameVal (stepCorr);
}
deltaTCorr = stepCorr * deltaT;
for (j =0; j<3;j++) o
AllocMem (corrSum[j], nFunCorr * nValCorr, real);
AllocMem (corrSumSql[j], nFunCorr * nValCorr, real);
for (n = 0; n < nFunCorr * nValCorr; n ++) {
corrSum[j][n] = 0.;
corrSumSq[j][n] = 0.;
}
}
AllocMem (work, 2 * (nValCorr - 1), Cmplx);
nData = 0;
nSet = 0;
while (1) {
if (! (bp = fgets (buff, BUFF_LEN, fp))) break;
if (! stroncmp (bp, txtCorr, strlen (txtCorr))) {
++ nSet;
if (nSet < nSetSkip) continue;
++ nData;
for (j =0; j <3; j++) 1
bp = fgets (buff, BUFF_LEN, fp);
for (n = 0; n < nValCorr; n ++) {
bp = fgets (buff, BUFF_LEN, fp);
w = strtod (bp, &bp);
for (k = 0; k < nFunCorr; k ++) {
w = strtod (bp, &bp);
corrSum[j] [k * nValCorr + n] += w;
corrSumSq[j] [k * nValCorr + n] += Sqr (w);
}
F}
F
}
}
fclose (fp);
printf ("7d\n", nData);
for (j =0; j<3;j++) o
for (n = 0; n < nFunCorr * nValCorr; n ++) {
corrSum[j] [n] /= nData;
corrSumSq[j] [n] = sqrt (corrSumSq[j][n] / nData -
Sqr (corrSum[j][nl));
F}
}
if (doFourier) {
for (j =0; j<3;j++) o
for (k = 0; k < nFunCorr; k ++) {
for (n = 0; n < nValCorr; n ++) {
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if (doWindow) damp = (nValCorr - n) / (nValCorr + 0.5); 9%
else damp = 1.;
CSet (work[n], corrSum[j][k * nValCorr + n] * damp, 0.);
F
for (n = nValCorr; n < 2 * (nValCorr - 1); n ++)
work[n] = work[2 * (aValCorr - 1) - n]; 95
FftComplex (work, 2 * nValCorr - 2);
for (n = 0; n < nValCorr; n ++)
corrSum[j] [k * nValCorr + n] = work[n].R;
}
} 100
omegaMax = Min (omegaMax, M_PI / deltaTCorr);
nv = nValCorr * omegaMax / (M_PI / deltaTCorr);

} else {
for (j =0; j <3; j+) {
for (k = 0; k < nFunCorr; k ++) { 1

for (n = 1; n < nValCorr; n ++)
corrSum[j] [k * nValCorr + n] /= corrSum[j][k * nValCorr];
corrSum[j] [k * nValCorr] = 1.;
F
} 110
tMax = Min (tMax, (nValCorr - 1) * deltaTCorr);
nv = nValCorr * tMax / ((nValCorr - 1) * deltaTCorr);
}
for (j =0; j<3;j++) 1
printf ("}%s\n", header[j]); 115
for (n = 0; n<nv; n ++) {
if (doFourier) x = n * omegaMax / nv;
else x = n * deltaTCorr;
printf ("%9.4f", x);
for (k = 0; k < nFunCorr; k ++) 120
printf (" 7%9.4f", corrSum[j][k * nValCorr + n]);
printf ("\n");

}

}
} 125
void PrintHelp (char *pName)
{

printf ("Usage: /s [-t{time_corr}] [-s{skip}n] [-w{window}]"

" input-file \n", pName); 130

exit (0);

}

5.5 Measurements

Velocity autocorrelation function

The velocity autocorrelation functions shown in Figure 5.2 are computed during
soft-sphere runs that use the following data,
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Fig. 5.2. Soft-sphere velocity autocorrelation functions for densities 0.6—1.0.

deltaT 0.005
density 0.6
initUcell 555
limitAcfAv 200
nBuffAcf 10
nebrTabFac 8
nValAcf 200
rNebrShell 0.4
stepAct 3
stepAvg 1000
stepEquil 2000
stepInitlzTemp 100
stepLimit 15000
temperature 0.5

with values of density between 0.6 and 1.0. Leapfrog integration is used. The
initial state is an FCC lattice, so that N,, = 500. A single set of results based
on 200 sets of partially overlapped measurements is produced during a run of
15000 timesteps. The negative correlations that are observed at higher densities
(both for LJ and hard-sphere systems) were one of the important early revelations
of MD [rah64, ald67].

Given the exponential sensitivity of the trajectories to any numerical error, as
demonstrated in §3.8, it is important to establish that results such as the velocity
autocorrelation function are fully reproducible. Here we show one example to con-
firm that this is indeed the case. The system used is the same as above, at a density
of 0.9, but with different values of A¢; measurement intervals and run lengths are
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Fig. 5.3. Velocity autocorrelation functions for p = 0.9 computed using At = 0.005,
0.0025 and 0.001 25; the results at later times are also shown with a vertical 100-fold
magnification.

adjusted accordingly. Figure 5.3 shows the results; in order to resolve the extremely
small differences at later times, the results are replotted with the vertical scale en-
larged by a factor of 100.

Transport coefficients

Diffusion coefficient measurements using (5.2.4) for the same system® are shown
in Figure 5.4. The necessary input data include

limitDiffuseAv 200

nBuffDiffuse 10
nValDiffuse 250
stepDiffuse 4
stepLimit 63000

For p > 0.9 the values drop to zero and there is no significant diffusion, while
at smaller p they appear to asymptote to increasingly larger values, although
convergence also slows and longer measurements are seen to be necessary at p =
0.6 and 0.7.

Estimates for D based on (5.2.6) can be obtained by integrating the velocity
autocorrelation functions shown in Figure 5.2. The results, without any attempt at

& pr_andiffus
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Fig. 5.4. Diffusion coefficient measurements for densities 0.6—1.0.
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Fig. 5.5. Velocity, pressure-tensor and heat-current autocorrelation functions; the vertical
scale has been expanded to show the noise present in the results.

error estimation, for p = 0.9, 0.8, 0.7 and 0.6, are 0.001, 0.038, 0.067 and 0.108
respectively; these can be compared with the D values of Figure 5.4.

In Figure 5.5 we show the three autocorrelation functions whose integrals yield
D, n and A, namely velocity, pressure tensor and heat current. The system used
here has N,, = 864, p = 0.8 and T = 1. To improve the quality of the results,



5.5 Measurements w .l

Table 5.1. Transport coefficients (c) from the integrated autocorrelation functions.

c (c) o(c) o(c)/(c)

D 0.0818 0.0015 0.0180
n 1.4468 0.6297 0.4352
A 5.6299 1.9573 0.3477

the computation is run for almost a half million timesteps, with the following mea-
surement parameters included in the input data:

stepEquil 4000
limitAcfAv 500
nBuffAcf 30
nValAcf 600
stepAcf 3

This yields 15 sets of autocorrelation results; the leapfrog integrator produces prac-
tically no energy drift (a mere one part in 2000) over the entire run. There is a
clear difference between the smooth velocity autocorrelation function, which in-
volves separate contributions from each atom, and the other two functions which
are comparatively noisy because the entire system must be considered to obtain a
single measurement.

Evaluation of the transport coefficients by integrating these autocorrelation func-
tions® over the entire range to t = 9 leads to the results shown in Table 5.1. The
uncertainty in the estimates of 1 and A is considerable, but can be reduced once it is
realized that the noise in the integrands makes a substantial contribution to the error
without improving the estimate of the mean [lev87]. To show the potential for im-
provement, Table 5.2 lists the results obtained by terminating the integration after
the first 70 values, corresponding to ¢ & 1, as well as after two and three times this
number of values. Further information on transport coefficient calculations using
these methods can be found in [lev73, sch85, lev87, vog87].

Space—time correlations

Sample results for space—time correlation functions are obtained from a single run
of a soft-sphere system with N,, = 2048, T = 0.7 and p = 0.84. The state point

® pr_antransp
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Table 5.2. Effect of truncating the autocorrelation function integration after n values.

n ¢ (c) o(c) o(c)/{c)

70 D 0.0780 0.0006 0.0076

n 1.6890 0.1877 0.1111

A 6.3320 0.6518 0.1029

140 D 0.0807 0.0008 0.0094

n 1.6904 0.2125 0.1257

A 6.3355 1.1238 0.1774

210 D 0.0815 0.0011 0.0129

n 1.7120 0.3338 0.1950

A 5.9660 1.3919 0.2333
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Fig. 5.6. Normalized intermediate scattering function F (k, ¢) for the four smallest k val-
ues; the decay becomes slower as k — 0.

is chosen to be fairly close to published results for the LJ fluid [sch86]. The input
data include

limitCorrAv 500
nBuffCorr 80
nFunCorr 4
nValCorr 1025
stepCorr 5

A run of a little over 4 x 10° timesteps produces 13 sets of results.
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Fig.5.7. Normalized longitudinal (solid curve) and transverse (dashed) current correlation
functions, Cy (k, t) and Ct (k, t), for the two smallest k values.
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Fig. 5.8. Dynamic structure factor S(k, @) for the four smallest k values.

Figure 5.6 shows the normalized intermediate scattering function F (k, t) for the
four smallest values of k. The normalized current correlation functions C; (k, t)
and Cr (k, t) are shown in Figure 5.7, with results for the two smallest £ values
included in both cases. The absence of any structure in Cr is expected for normal
liquids that do not support shear waves; the peaks in C; correspond to sound prop-
agation. Finally, the dynamic structure factor S(k, w), with its expected peaks, is
shown in Figure 5.8. In general, the soft-sphere results resemble those for the LJ

¥
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case [sch86] (allowing for the different time units); they can also be compared
with hard-sphere results [all83]. Additional correlation functions are treated in
[des88].

5.1

5.2

53

54

5.5

5.6

5.7

5.8

5.6 Further study

All the transport coefficient values have been given in reduced MD units;
convert them to physical units and compare with the experimental values
for argon.

Extend the diffusion measurements until all converge.

Compare the transport coefficients for soft-sphere and LJ fluids under simi-
lar conditions.

The large ¢ behavior of the autocorrelation functions is a subject of par-
ticular interest [erp85, erp88]; examine the kind of decay that occurs and
whether it depends on some power of ¢ (rather than the exponential decay
that might have been naively expected). What kind of cooperative motion
is responsible for this behavior in the case of the velocity autocorrelation
function [ald70b]?

The bulk viscosity is another transport coefficient; measure it using the ap-
propriate autocorrelation function [lev73, lev87].

New transport coefficients appear when binary fluids are studied; consider
the possibilities [vog88].

Explore alternative, possibly more efficient methods for organizing the
space—time correlation computations.

The space-time correlations show propagating longitudinal modes (these
correspond to sound waves); is it possible to observe similar transverse
modes (shear waves) at sufficiently high density [lev87]?
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Alternative ensembles

6.1 Introduction

The equations of motion used in MD are based on Newtonian mechanics; in this
way MD mimics nature. If one adopts the purely mechanical point of view there is
little more to be said, but if a broader perspective is permitted and MD is regarded
as a tool for generating equilibrium states satisfying certain specified requirements,
then it is possible to modify the dynamics and address a broader range of problems.
But at the outset it must be emphasized that no physical meaning is attributed to
the actual dynamics, and the approach is merely one of computational convenience
for generating particular equilibrium thermodynamic states, although — and this is
not an attempt to extract any such meaning — the deviations of the motion from the
truly Newtonian may in fact be extremely small.

Conventional MD differs from most experimental studies in that it is the energy
and volume that are fixed, rather than temperature and pressure. In statistical me-
chanical terms, MD produces microcanonical (NVE) ensemble averages, whereas
constant-temperature experiments correspond to the canonical (NVT) ensemble; if
constant pressure is imposed as well, as is generally the case in the laboratorys, it is
the isothermal-isobaric (NPT) ensemble that is the relevant one. While the choice
of ensemble is usually one of convenience at the macroscopic level since (away
from the critical point) thermal fluctuations are small, for the microscopic sys-
tems studied by MD the fluctuations of nonregulated quantities can be sufficiently
large to make precise measurement difficult. Modifying the dynamics allows MD
to model the equilibrium behavior of such ensembles directly.

We will describe two different approaches to the problem. One employs a feed-
back mechanism for correcting deviations in the controlled parameter (for example,
temperature) from the preset mean value; the value fluctuates, but the size of the
fluctuations can be regulated. The other method ensures that the controlled param-
eter is strictly constant, apart from numerical drift, by augmenting the equations of
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motion with suitable mechanical constraints; thus temperature can be held constant
by introducing a constraint that fixes the kinetic energy.

There are other ways to change the ensemble, such as by coupling the system
to a constant-temperature heat bath, or even by simply resetting the kinetic energy
at each timestep. The former requires a stochastic mechanism for adjusting veloc-
ities in order to reproduce the effect of a heat bath [and80], but this violates the
deterministic nature of the dynamics. The latter method is sufficiently crude not
to merit consideration, although when it comes to introducing hard walls into the
simulation (§7.3) the same idea can be adopted, but the justification is of course
entirely different.

6.2 Feedback methods

Controlled temperature

The mechanism for feedback regulation of temperature rests on the idea that be-
cause the temperature is proportional to the mean-square velocity it ought to be
possible to vary the temperature by adjusting the rate at which time progresses
[nos84a]. A new dynamical variable s is introduced into the Lagrangian in a man-
ner that is equivalent to rescaling the unit of time, and extra terms are added in
just the way needed to obtain the desired behavior. There are now two distinct time
variables: the real, or physical, time ¢’, and a scaled, or virtual, time ¢; the relation
between them is through their differentials,

dt =s(t)drt (6.2.1)
The Lagrangian for this unusual ‘extended’ system is written as

L= %msz Zrlz — Zu(rij) + %Msjz - nfT 10gS (622)

i<j
where T is the required temperature,
ng=3N,+1 (6.2.3)

is the number of degrees of freedom (which could be reduced by three to account
for momentum conservation), M; plays the role of a mass that is needed in or-
der to construct an equation of motion for the new ‘coordinate’ s, and the dot
stands for the derivative d/dt — note that (6.2.2) is defined in terms of the vir-
tual time. The Lagrange equations of motion that are obtained by the standard
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procedure are

. 1 2s .
ri = —Zﬁ — — I (624)
ms S
M,s':mst?—ﬂ (6.2.5)
: Dk 2.

Because the relationship between ¢ and ¢’ depends on the entire history of the sys-
tem, namely,

= /s(t’) dt’ (6.2.6)

it is more convenient if the equations are transformed to use physical time units
[nos84b, hoo85]; henceforth the dot will be used to denote d/dt’, and the equations
can be rewritten as

. 1 S .

ri = —ﬁ — —r; (627)
m S

o $ G (6.2.8)

S = — L
Ky M

where
Gi=mY it —nsT (6.2.9)

The first of these equations of motion resembles the conventional Newtonian equa-
tion with an additional frictionlike term, though not true friction because the coef-
ficient can be of either sign; the second equation defines the feedback mechanism
by which s is varied to regulate temperature.

The motivation for the logs term in the Lagrangian can now be appreciated.
Assume that it is replaced by a general function w(s); since s is finite, the time
average of § must vanish, implying that

I\ [dw
m<; > OF > = < o > (6.2.10)

The left-hand side is just n (T /s), so that if we equate the actual values rather than
Just the averages we find that w(s) = n T logs.

The equilibrium averages of the physical system can be shown to be those of the
canonical ensemble at temperature T [nos84a]. In order to establish this result the
microcanonical partition function of the extended system is simply integrated over
the s variable and what remains is the canonical partition function. The temperature
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itself is not constant, however, but the negative feedback acting through s ensures
that the fluctuations are limited and the mean value is equal to 7T .
The Hamiltonian of the extended system

.\ 2
. N
H= %mzr,z + Y ) + %Ms<;) +nyT logs (6.2.11)

i<j

is conserved since there are no time-dependent external forces and this provides
a useful check on the accuracy of the numerical solution. The Hamiltonian has
no physical significance; its first two terms represent the energy of the physical
system, but their sum is free to fluctuate.

The quantity M; is a parameter whose value must be determined empirically; M
has no particular physical meaning and is simply a part of the computational tech-
nique. In principle, the value of M does not affect the final equilibrium results,
but it does influence their accuracy and reliability, because if the kinetic energy
fluctuations are allowed to become too large it is rather difficult to think of the sys-
tem existing at a particular temperature. For small variations in s the characteristic
period of the fluctuations is [nos84a]

T, = 21,/ M (s)?/2nsT (6.2.12)

and the simulation must extend over many such periods to prevent these fluctua-
tions from influencing the results adversely.

An MD program demonstrating temperature feedback will not be shown sepa-
rately but will be combined with the version that incorporates pressure feedback as
well. This method is described below.

Controlled pressure and temperature

While the connection between time and temperature just introduced is not remi-
niscent of any physical mechanism, pressure can be adjusted by altering the con-
tainer volume. In the MD context this is achieved by a uniform isotropic volume
change brought about by rescaling the atomic coordinates [and80]. A more use-
ful method emerges if this is combined with the temperature feedback; the appro-
priate Lagrangian treatment leads to a system whose behavior corresponds to the
isothermal-isobaric (NPT) ensemble.

We consider a cubic simulation region with a volume that is allowed to vary.
Scaled coordinates r are introduced that span the unit cube and are related to the
physical coordinates r’ by

r=r /vy (6.2.13)
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The same scaled time variable introduced previously is also used here, so that now
both V and s are treated as supplementary dynamical variables. The Lagrangian for
this system is a generalization of (6.2.2), with additional terms designed to ensure
the correct pressure feedback mechanism [nos84b] (and once again the dot denotes
d/dt),

L=1imVB2Y i = " u(V iry) + IM$* + M,V
i i<j (6.2.14)
—nsT logs — PV

where P and T are the required (externally imposed) values and M, is another
generalized mass parameter. Roughly speaking, M, can be regarded as the mass
of a piston that could have been used to regulate pressure by altering the volume,
but because of the need to avoid explicit walls the effect of a sliding piston is
achieved by means of a uniform volume change; a real piston would also introduce
undesirable effects such as pressure waves. The first term in the Lagrangian is the
kinetic energy, though not that of the physical system obtained by the substitution
Vo= V34 (V /3V2/3)r, but a value based on velocities measured relative to
the rate at which the region size changes (the V term is dropped) [and80]; removal
of the flow component of the atomic velocities is essential to ensure the correct
definition of temperature.
The Lagrange equations of motion, in scaled variables, are

1 25 2V
",‘ = —>5=Ji — | — - .,' 6.2.15
" mV1/3s2f (s +3V)r ( )
. . nfT
M§ = mV?Ps Z 72— — (6.2.16)
1
o ms? .9 1
MV = 5pim L5+ gpam 2 fu = P (@210
i i<j

Returning to physical time units, with the dot now denoting d/dt’, we obtain

. 1 p § N 2V . 62.18)
ri—=——Ji— | - — |I; L
mV1/3 s 3V
S‘z Gls
§ = 6.2.19
§ ; + M. ( )
. SV Gos?
p=L 22 (6.2.20)

s 3M,V
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where
Gy =mV*Y i —nT (6.2.21)
Gy=mV*PY i+ VY ;- fiy =3PV (6.2.22)
i

i<j
Scaled coordinates have been retained since they are more convenient from a com-
putational point of view (see further).
When the dynamics are supplemented by these two extra degrees of freedom,
the equilibrium averages of the physical system can be shown to be those of the
NPT ensemble [nos84b]. The Hamiltonian is

<\ 2
H=3smV>? Y i+ Y u(V i)+ %M‘Y(§>
- N
1

i<j

(6.2.23)

‘} 2
+ %MU<;> +n;T logs + PV

and, though conserved, it is once again not a physically meaningful quantity. The
method of establishing a reasonable value for M, is again empirical; for small
variations in V' the characteristic period is [nos83]

T, =2/ M, (8V)?)T (6.2.24)

Periodic boundaries are most readily handled when the problem is expressed
in terms of scaled coordinates, because the simulation region is then a fixed unit
cube; use of physical variables introduces unnecessary complications when han-
dling boundary crossings, because velocities and accelerations must be adjusted as
well as coordinates [eva84]. When working with the PC method, the conversion
to physical coordinates needed for the interaction calculations can overwrite the
scaled coordinates because the predicted values are not needed for the corrector
computation. Since the volume varies, provision must be made for an adjustable
number of cells for use in the interaction calculations; for simplicity® we use the
cell method without a neighbor list.

In SingleStep the following code is required:

PredictorStep ();

PredictorStepPT ();

ApplyBoundaryCond () ;

UpdateCellSize ();

UnscaleCoords (); 3
ComputeForces ();

o pr_06_1
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ComputeDerivsPT ();

CorrectorStep ();

CorrectorStepPT ();

ApplyBoundaryCond () ; 10

The changes to EvalProps (assuming for simplicity ny = 3N,,) are

totEnergy.val += (0.5 * (massS * Sqr (varSv) +
massV * Sqr (varVv)) / Sqr (varS) + extPressure * varV) /
nMol + 3. * temperature * log (varS);

pressure.val = (vvSum + virSum) / (3. * varV);

where totEnergy.val corresponds to the Hamiltonian (6.2.23). Note the call to
UpdateCellSize (see below) immediately after the predictor calculation to deter-
mine the current cell size.

The new variables needed are

real extPressure, glSum, g2Sum, massS, massV, varS, varSa,
varSal, varSa2, varSo, varSv, varSvo, varV, varVa, varVal,
varVa2, varVo, varVv, varVvo;

int maxEdgeCells;

where varS and varV correspond to s and V, and the various suffixes denote
derivatives and earlier values (for the PC method) in the same way as for r. The
extra input data consists of

NameR (extPressure),
NameR (massS),
NameR (massV),

and additional initialization functions must be called from SetupJob,

InitFeedbackVars ();
ScaleCoords ();
ScaleVels ();

The maximum size of the cell array is set in SetParams. The calculation assumes
a cubic region, and we allow for a reasonable (but arbitrarily chosen) amount of
expansion beyond the initial region size,

maxEdgeCells = 1.3 * cells.x;

Storage allocation, in A1locArrays, to provide a cell array based on this maximum
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size requires the change

AllocMem (cellList, Cube (maxEdgeCells) + nMol, int);

Computing the right-hand sides of the feedback equations is as follows.

void ComputeDerivsPT ()
{

real aFac, vFac;

int n;

vvSum = 0.;

DO_MOL vvSum += VLenSq (mol[n].rv);
vvSum *= pow (varV, 2./3.);

g1Sum = vvSum - 3. * nMol * temperature;

g2Sum = vvSum + virSum - 3. * extPressure * varV; 10
aFac = pow (varV, -1./3.);
vFac = - varSv / varS - 2. * varVv / (3. * varV);

DO_MOL VSSAdd (mol[n].ra, aFac, mol[n].ra, vFac, mol[n].rv);

varSa = Sqr (varSv) / varS + glSum * varS / massS;

varVa = varSv * varVv / varS + g2Sum * Sqr (varS) / Is
(3. * massV * varV);

The second-order feedback equations for s and V are solved using the same PC
method as the equations of motion.

#define PCR4(r, ro, v, a, al, a2) \
r = ro + deltaT * v + wr * (cr[0] * a + cr[1] * al + cr[2] * a2)
#define PCV4(r, ro, v, a, al, a2) \

v = (r - ro) / deltaT + wv * (cv[0] * a + cv[1] * al + cv[2] * a2)

void PredictorStepPT ()

{
real cr[] = {19., -10., 3.}, cv[] = {27., -22., 7.}, div = 24., e,
Wr, wv;
10
wr = Sqr (deltaT) / div;

wv = deltaT / div;
varSo = varS;
varSvo = varSv;
PCR4 (varS, varS, varSv, varSa, varSal, varSa2); 15
PCV4 (varS, varSo, varSv, varSa, varSal, varSa2);
varSa2 = varSal;
varSal = varSa;
(ditto for varV)
e = pow (varV, 1. / NDIM); 20
VSetAll (regiom, e);



6.2 Feedback methods @ i

void CorrectorStepPT ()

{ 25
real cr[] = {3., 10., -1.}, cv[] = {7., 6., -1.}, div = 24., e,
Wr, WV;
wr = Sqr (deltaT) / div;

wv = deltaT / div; 30
PCR4 (varS, varSo, varSvo, varSa, varSal, varSa2);
PCV4 (varS, varSo, varSvo, varSa, varSal, varSa2);
(ditto for varV)
e = pow (varV, 1. / NDIM);
VSetAll (regiom, e); 35

Initialization of the extra variables is as follows.

void InitFeedbackVars ()

{
varS = 1.;
varV = Cube (region.x);
varSv = 0.; 5
varSa = 0.;

varSal = 0.;
varSa2 = 0.;
(ditto for varV...)

Coordinate and velocity rescaling (just one of the functions is shown) and cell size
adjustment are handled by

void ScaleCoords ()
{

real fac;

int n;

fac = pow (varV, -1. / 3.);
DO_MOL VScale (mol[n].r, fac);
}

void UpdateCellSize () 10
{

VSCopy (cells, 1. / rCut, region);

cells.x = Min (cells.x, maxEdgeCells);

cells.y = Min (cells.y, maxEdgeCells);

cells.z = Min (cells.z, maxEdgeCells); 5
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The function EvalProps needs a minor addition to allow for the scaled veloci-
ties; the form of the kinetic energy term in (6.2.23) determines the way vvSum must
be calculated,

vvSum *= pow (varV, 2./3.);

and the definition of VWrap used in ApplyBoundaryCond must be altered to use
scaled coordinates (the function itself is unchanged),

#define VWrap(v, t) \
if (v.t >= 0.5) v.t -= 1.; \
else if (v.t < -0.5) v.t += 1.

Output of the instantaneous region edge length region.x should be added to
PrintSummary.
The results shown here are based on a soft-sphere system with input data

deltaT 0.001
density 0.8
extPressure 6.5
initUcell 555
massS 0.1
massV 0.01
stepAvg 200
stepEquil 0
stepLimit 20000
temperature 1.

The values used for M, (massV) are 0.01, 0.1 and 1.0, with just the single value
used for M, (massS); the value of At depends to some extent on both these mass
parameters, but here the drift in the total Hamiltonian (6.2.23) over the entire run
is less than one part in 5000. The initial state is an FCC lattice, so that N,, = 500.

The fluctuating kinetic energy for the case M, = 1 is shown in Figure 6.1.
The average value over 18 000 timesteps, ignoring the first 2000 timesteps, is the
expected (Ex) = 1.5000, with o (Eg) = 0.0013.

Pressure could be displayed similarly. A more revealing result, however, is the
way the region edge length varies with time; this is shown for different values of
M, in Figure 6.2. The corresponding pressure results for all three values of M, are
listed in Table 6.1. It is clear that in the case of M, = 1 the run is not long enough,
so that even though the apparent o (P) is the smallest, the estimate of (P) could
be incorrect due to inadequate sampling. The additional degrees of freedom used
in the feedback methods introduce their own timescales that must be taken into
account in determining the run length.
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Table 6.1. Pressure estimates.

M, (P) o(P)

1.00 6.543 0.142
0.10 6.559 0.278
0.01 6.465 0.344

1.504 T 1 T

1502 _

1.500

kinetic energy

1.498 7

1.496 TR R TR R TR R I
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timestep

Fig. 6.1. Kinetic energy fluctuations for PT -feedback simulation with M, = 1.

8.65

8.60

length
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Fig. 6.2. Region edge fluctuations for M, = 0.01, 0.1 and 1.0; the frequency is higher for
smaller M,.
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Controlled pressure with variable region shape

In the above treatment of pressure feedback the simulation volume retained its
cubic form, so that changes consist of uniform contractions and expansions. The
method is readily extended to the case of a simulation region in which the lengths
and directions of the edges are allowed to vary independently, subject to uniform
external pressure [par80, nos83] (an even more general case where the applied
stress components are specified separately can also be handled [par81]). The more
flexible approach allows for the size and shape changes needed to accommodate
lattice formation on freezing and for the study of structural phase transitions be-
tween different crystalline states. We will outline the mathematical formulation of
the problem (omitting temperature feedback), but it will not be treated as a case
study.

Once again, scaled coordinates are introduced, but they are now defined using a
more general linear transformation

r=Hr (6.2.25)
where the transformation matrix
H = (hy,) = (c1, €2, ¢3) (6.2.26)

is defined in terms of the vectors {c,} specifying the edges of the MD region, and
the volume is

V=c-cxc=detH (6.2.27)
A metric tensor
G=H"H (6.2.28)

can be introduced, so that

72

r = rz'TjGrij (6.2.29)

The scaled coordinates span the unit cube and periodic images have coordinates
H (r + (ny, ny, nz)). Note the standard relation between spatial derivatives in the
two coordinate systems,

3/ar = (H") '9/dr (6.2.30)

The distortion of the simulation region is limited by the requirement that the inter-
action range does not exceed half the smallest region dimension.
The Lagrangian for this system is

L=3mY #Gi =y u(Hry) + M,y i, — PV (6.2.31)

i<j v
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so that the Lagrange equations for the coordinates are

i =H"'f/m—G"'Gi, (6.232)
In the isotropic case this reduces to the earlier result, because H ' = V!/3I and
G~ 'G =2V /3V. The Lagrange equations for the components of H are
.. PYY%
M,h,, =m [HF],7v + iinlijy — P—— 6.2.33
w=m ) _H, Zf =P (6.2.33)

If we introduce an additional matrix

aV
U= (”/}.v) = (ah )
v

=VH"
=(cp X €3, €3 X €1, €] X C2) (6.2.34)
then because
riv =V u[Hril, (6.2.35)

y2

the equation of motion (6.2.33) can be expressed concisely as
M,H = (P - PDU (6.2.36)

where P is the pressure tensor.

6.3 Constraint methods

Constant temperature

The alternative to feedback control is the use of mechanical constraints. Enforc-
ing constant temperature amounts to introducing a nonholonomic constraint into
the equations of motion in order to fix the kinetic energy; in effect, this serves
as a mathematical thermostat [hoo82, eva83a]. The justification for this arises not
from Hamilton’s variational principle, but from another formulation of mechan-
ics known as Gauss’s principle of least constraint [eva83b], which states that the
quantity

Zmi(fi — fi/m)? (6.3.1)

is minimized by the constrained motion. If the nonholonomic constraints are non-
linear but homogeneous functions of velocity (as is the case here), the results are
formally the same as those the variational principle would have produced [ray72].
The equilibrium properties of this isothermal system can be shown to be those of
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the canonical ensemble [eva84], but the dynamics must once again be interpreted
with care since the motion is no longer Newtonian.

Since there are 3N,, degrees of freedom (we ignore the three lost to momentum
conservation), the constraint equation designed to ensure constant temperature is
(assuming that all m; are equal)

NVH
NuEx =3m Y i} (6.3.2)

i=1

The constrained equation of motion is
1
Fp=—fi+ar (6.3.3)
m

and since Ex = 0, or equivalently

Y ke FE=0 (6.3.4)

it follows that the value of the Lagrange multiplier « is

i f,
a=—=—> 6.3.5
m Zi F 12 ( .
If the thermostat is used together with the PC method, the following function
(m = 1 is assumed) should be called from SingleStep immediately after the

force evaluation:

void ApplyThermostat ()
{
real sl1, s2, vFac;
int n;

s1 = 0.;
s2 = 0.;
po_MOL {
s1 += VDot (mol[n].rv, mol[n].ra);
s2 += VLenSq (mol[n].rv); 10
}
vFac = - s1 / s82;
Dpo_MOL {
VVSAdd (mol[n].ra, vFac, mol[n].rv);
} Is
}

It is also possible to combine the constant-temperature approach with the leapfrog
integrator, by embedding’ the isothermal condition into the integration procedure

t This was done in the first edition.
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[bro84]. An alternative — one more readily generalized to other problems — is not
to alter the leapfrog integrator, but to modify ApplyThermostat so that it uses
estimates of the velocity at the end of the timestep instead of the values available
at the midpoint; this ensures that the contributions to « in (6.3.5) are evaluated at

the same time. The leapfrog version of the thermostat function® is

void ApplyThermostat ()

VecR vt;
real s1, s2, vFac;
int n;

s1 =0.;
s2 =0.;
DO_MOL {

VSAdd (vt, mol[n].rv, 0.5 * deltaT, mol[n].ra);

s1 += VDot (vt, mol[n].ra);
s2 += VLenSq (vt);

}
vFac = - s1 / s2;
DO_MOL {
VSAdd (vt, mol[n].rv, 0.5 * deltaT, mol[n].ra);
VVSAdd (mol[n].ra, vFac, vt);
}
F

The temperature constraint is only preserved to the accuracy of the numerical
integration. Any temperature drift must be corrected periodically (at intervals of
stepAdjustTemp) by velocity rescaling, although this can now be based on the
instantaneous value of Ekx rather than on an average over preceding timesteps as in

§3.6. The function used for this is

void AdjustTemp ()
{

real vFac;

int n;

vvSum = O.;
DO_MOL vvSum += VLenSq (mol[n].rv);
vFac = velMag / sqrt (vvSum / nMol);
DO_MOL VScale (mol[n].rv, vFac);

}

In Table 6.2 we make a limited comparison between the constant-energy MD
results obtained earlier for an N,, = 500 LJ system (with r, = 2.2 and p = 0.8) and
the corresponding results obtained using isothermal dynamics; leapfrog integration

& pr_06_2
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Table 6.2. Constant-energy and temperature results for LJ fluid.

constant-£ constant-T" constant-£ constant-T'
T E (E) o(E) (P) o(P) (P) o(P)

0.8 —=3903 —-3.896 0.038 0.998 0.117 1.019 0.195
1.0 =3.411 —3.421 0.044 2.021 0.145 1.999 0.208
1.2 =2957 =2.947 0.049 2.967 0.165 2.976 0.230
14 -2460 —2.486 0.054 3.880 0.176 3.837 0.247
1.6 —=2.029 —2.048 0.062 4.684 0.224 4.636 0.282

is used (At = 0.005). The agreement is satisfactory, as more careful tests will
confirm.

Constant pressure and temperature

The idea of using mechanical constraints to fix thermodynamic properties can be
extended to include pressure as well [eva84]. The problem is formulated in terms
of scaled coordinates, exactly as in the feedback case, and so the unconstrained
Lagrangian is
1, 1/2/3 .2 1/3
L=imVBY i = " u(V'Pr)) (6.3.6)
i i<j

Here, the kinetic energy is again defined using velocities measured relative to the

rate at which the region size changes. The equations for the 7 and P constraints
are

NuEg = 3mV*3 Y i (6.3.7)

3PV =mV*3Y iR+ V'Y e fy (6.3.8)

i<j

The equation of motion is

) 1 , )

r, = mﬁ + (Ol — 2]/)",' (639)
where

y = V/3V (6.3.10)

is the dilation rate and o’ the Lagrange multiplier. From the constant-temperature
condition Ex = 0 we have

YokE+yY =0 6.3.11)
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and it follows that

Z,rz.ﬁ

TATER S e o (6.3.12)

a=d —y=—

so that (6.3.9) can be expressed in terms of « rather than o’
The constant-P condition provides the means for computing y . Starting with

d : p——
(PV)=PV =3yPV =3 ; 0l ) (6.3.13)

and noting that for pair potentials (such as LJ) that depend only on distance r'- f =
—r'du(r’)/dr’, we obtain

d ..
E(r - ==yr-r (6.3.14)
where we have defined
d? 1d
(@) = Wu(r) + ;%u(r) (6.3.15)
Thus,
9y PV = —V?¥3 Z Vi (rij CFij+ )"'izj) (6.3.16)
i<j

where v;; denotes v (r/ j), and for the LJ (or soft-sphere) potential
V() = 1444r~% —r78) (6.3.17)

Rearrangement of (6.3.16) yields an expression for y in terms of known quantities,
namely,

VY i - iy
i<j
y=— (6.3.18)
OPV + VD "y

i<j

In situations where the use of an interaction cutoff has a significant effect on P the
estimated corrections can be included in the evaluation of y.

The equations of motion need to be supplemented by the dilation equation,
where L = V173,

L=vyL (6.3.19)

This equation must be integrated numerically to obtain L (¢) at each timestep, given



170 6 Alternative ensembles @ i

the current value of y (¢). The pressure can initially be set to the required value and
any subsequent small drift eliminated by solving the nonlinear equation

PV)y—P=0 (6.3.20)

to obtain the appropriate V. The solution is obtained using the Newton—Raphson
method [pre92]; here this entails iterating the expression

L« L(l = PO-F > (6.3.21)
3P(V)+ Y yrl 3V
i<j

and recomputing the interactions and pressure at each cycle, until

PO) =PI _

P €p (6.3.22)

The equilibrium averages are those of the NPT ensemble [eva84].

Many of the implementation details® are based on the feedback case treated
previously. The cell method is used, and the required additions to ComputeForces
(§3.4) are

VecR dv;
real w;

dvirSuml = dvirSum2 = O0.;

w = 144. * rri3 * (4. * rri3 - 1.) * rri;
VSub (dv, mol[j1].rv, mol[j2].rv);
dvirSuml += w * VDot (dr, dv);

dvirSum2 += w * rr;

In the function ApplyThermostat, the second loop contains

VSSAdd (mol[n].ra, 1. / varL, mol[n].ra, vFac / varL -
dilateRate, mol[n].rv);

& pr_06_3
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where varlL is the value of L. The new variables used in these computations are

real dilateRate, dilateRatel, dilateRate2, dvirSuml, dvirSum2,
extPressure, tolPressure, varL, varLo, varLv, varLvl, varLv2;
int maxEdgeCells, nPressCycle, stepAdjustPress;

and the additional inputs

NameR (extPressure),
NameI (stepAdjustPress),
NameR (tolPressure),

where tolPressure is €p in (6.3.22). A new function is needed to evaluate the
dilation rate y:

void ApplyBarostat ()

{
real vvS;
int n;
5
vvS = 0.;
DO_MOL vvS += VLenSq (mol[n].rv);
dilateRate = - dvirSuml * varL / (3. * (vvS * Sqr (varL) + virSum) +
dvirSum2) ;
F 10

The dilation equation (6.3.19) is solved using the k¥ = 3 PC method for first-
order differential equations described in §3.5.

void PredictorStepBox ()

{
real c[] = {23., -16., 5.}, div = 12.;

varLv = dilateRate * varL; s

varLo = varL;

varL = varL + (deltaT / div) * (c[0] * varLv + c[1] * varLvl +

cl[2] * varLv2);

varLv2 = varLvi;

varLvl = varLv; 10

dilateRate2 = dilateRatel;

dilateRatel = dilateRate;

VSetAll (region, varlL);
}

15

void CorrectorStepBox ()
{

real c[] = {5., 8., -1.}, div = 12.;

varLv = dilateRate * varL; 20
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varL = varLo + (deltaT / div) * (c[0] * varLv + c[1] * varLvl +
c[2] * varLv2);
VSetAll (region, varL);
F

The changes that must be made to SingleStep to accommodate the extra compu-
tations are

PredictorStep ();

PredictorStepBox ();

ApplyBoundaryCond ();

UpdateCellSize ();

UnscaleCoords (); 5
ComputeForces ();

ApplyBarostat ();

ApplyThermostat ();

CorrectorStep ();

CorrectorStepBox (); 10
ApplyBoundaryCond () ;

EvalProps ();

nPressCycle = 0;

if (stepCount J, stepAdjustPress == 0) AdjustPressure ();

if (stepCount J, stepAdjustPress == 10) AdjustTemp (); Is

and in EvalProps

vvSum *= Sqr (varL);

pressure.val = (vvSum + virSum) / (3. * Cube (varl));

The reason for separating the pressure and temperature adjustments by several
timesteps is to allow the system to settle down after the volume change; the ef-
fect of the delay can be seen in the results.

Pressure adjustments employ a Newton—Raphson procedure to modify the re-
gion size, as discussed earlier.

void AdjustPressure ()
{

real rFac, w;

int maxPressCycle, n;

maxPressCycle = 20;
if (fabs (pressure.val - extPressure) > tolPressure * extPressure) {
UnscaleCoords ();
vvSum = vvSum / Sqr (varL);
for (nPressCycle = 0; nPressCycle < maxPressCycle; 10
nPressCycle ++) {
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UpdateCellSize ();
ComputeForces ();
w = 3. * Cube (varL);
pressure.val = (vvSum * Sqr (varL) + virSum) / w; Is
rFac = 1. + (pressure.val - extPressure) / (3. * pressure.val +
dvirSum2 / w);
DO_MOL VScale (mol[n].r, rFac);
VScale (region, rFac);
varL *= rFac; 20
if (fabs (pressure.val - extPressure) <
tolPressure * extPressure) break;

}
ScaleCoords ();
vvSum *= Sqr (varL); 25

}
}

The variable maxPressCycle is provided as a safety measure in the unlikely event
of the method failing to converge. The counter nPressCycle is globally declared
to allow its inclusion in the output. The previous acceleration values used by the
PC method are not modified following the volume change; since this change ought
to be small the consequences of this omission should be negligible.

The function Ad justTemp shown earlier requires the addition after the first loop

vvSum *= Sqr (varL);

Initialization (in SetupJob) now includes

InitBoxVars ();
ScaleCoords ();
ScaleVels ();

and the variables associated with the region size are initialized by

void InitBoxVars ()

{
varlL = region.x;
varLv = 0.;
varLvl = 0.; 5
varLv2 = 0.;
dilateRatel = O0.;
dilateRate2 = 0.;
}

The variable maxEdgeCells is used, as in the earlier feedback case, to allow
for extra cells. Note that varL (the current region edge) is used instead of varV
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Table 6.3. Results from constant-P T run.

timestep (E) (Eg) (P) L

1000 1.6334 1.4970 0.7985 11.2765
2000 1.6327 1.4971 0.8105 10.0277
4000 2.3421 1.4987 6.7568 8.5371
8000 2.3222 1.4979 6.5538 8.5432
12 000 2.3170 1.4979 6.5383 8.5484
16 000 2.3152 1.4979 6.5222 8.5846
20000 2.3155 1.4979 6.5286 8.5835

(the region volume in the feedback case) in converting between real and scaled
coordinates.

The demonstration of this method uses a soft-sphere system with N,, = 500; the
input data are

deltaT 0.002
density 0.8
extPressure 6.5
initUcell 555
stepAdjustPress 2000
stepAvg 500
stepEquil 0
stepLimit 20000
temperature 1.
tolPressure 0.001

Edited output of this run is shown in Table 6.3; the results include the current value
of the region edge L. The pressure is adjusted every 2000 timesteps, but the drift is
sufficiently small that only two cycles of the correction process are required (except
on the very first call where 12 are needed). The typical value of o (P) for this run
is 0.002.

6.4 Further study

6.1 By examining the relevant partition functions confirm that the equilibrium
properties of these methods correspond to the NVT and NPT ensembles.

6.2  If scaled coordinates are not used in the constrained-pressure method, ex-
amine the implications for processing the periodic boundaries.

6.3  Make a careful comparison of E(T) and P(T) measurements using feed-
back and basic MD methods.



6.4

6.5

6.6

6.4 Further study @l

Implement the pressure feedback simulation for the case of variable region
shape [nos83].

A further extension of the feedback approach is to the case of fixed external
stress [par81]; investigate applications of this method.

Study the soft-sphere and LJ melting transitions at constant pressure; when
the fluid freezes what is the crystal structure?
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Nonequilibrium dynamics

7.1 Introduction

In the study of equilibrium behavior, MD is used to probe systems that, at least
in principle, are amenable to treatment by statistical mechanics. The fact that sta-
tistical mechanics is generally unable to make much headway without resorting
to simplification and approximation is merely a practical matter; the concepts and
general relationships are extremely important even in the absence of closed-form
solutions. When one departs from equilibrium, very little theoretical guidance is
available and it is here that MD really begins to fill the role of an experimental
tool.

There are many nonequilibrium phenomena worthy of study, but MD applica-
tions have so far tended to concentrate on relatively simple systems, and the case
studies in this chapter will focus on the simplest of problems. To be more spe-
cific, we will demonstrate two very different approaches to questions related to
fluid transport. The first approach uses genuine Newtonian dynamics applied to
spatially inhomogeneous systems, in which the boundaries play an essential role:
simulations of fluids partly constrained by hard walls will be used to determine
both shear viscosity and thermal conductivity. The second approach is based on a
combination of modified equations of motion and fully homogeneous systems: the
same transport coefficients will be measured, but since there are no explicit bound-
aries the dynamics must be altered in very specific ways to compensate for their
absence.

7.2 Homogeneous and inhomogeneous systems

As computational tools, both homogeneous and inhomogeneous nonequilibrium
methods have their strengths and weaknesses. Before delving into the case studies,
which include a sampling of both approaches, it is appropriate to point out the
benefits and limitations of the different methods.

176
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The reason for preferring homogeneous systems is that if physical walls can be
eliminated (and replaced by periodic boundaries) all atoms perceive a similar envi-
ronment. Inhomogeneous systems, on the other hand, must allow for perturbations
to the structure and dynamics due to the presence of the walls. Furthermore, inho-
mogeneous systems may not exist at a uniquely defined temperature or density —
essential if any comparison with experiment is to be made — as a consequence of
the relatively large force needed to drive the mass or heat flow combined with the
small system size. Not all problems offer the homogeneous alternative, although
the more familiar transport coefficients can indeed be studied in this way.

The disadvantage of homogeneous nonequilibrium systems in general is the un-
physical nature of the dynamics, for not only are the equations of motion mod-
ified in such a way that the desired transport coefficient emerges directly from
linear response theory (actually a version of the theory extended to handle isother-
mal systems), they are also altered to mechanically suppress the heat generated
by the applied force [eva84, eva90]. The method is therefore best regarded as a
computational technique whose results are valid in the limit of zero applied force.
The fact that each transport property requires a separate simulation because of the
differing dynamical requirements leads to the question: if homogeneous systems
are already being used why isn’t it better to follow the more straightforward ap-
proach with Newtonian trajectories and autocorrelation functions as described in
§5.2, where all the transport coefficients can be computed together? Historically,
the answer focused on the accuracy of results obtained for comparatively small
systems, with non-Newtonian methods having a clear advantage. Whether this ad-
vantage still exists now that much more extensive simulation is possible remains to
be seen.

7.3 Direct measurement

Viscous flow

Two of the more elementary exercises in fluid dynamics, both with closed-form
solutions, are Couette flow and Poiseuille flow. In planar Couette flow the fluid is
confined between two parallel walls that slide relative to one another at a constant
rate. An example of Poiseuille flow is a fluid forced to flow between two fixed
walls. The walls are rough, so that a thin, stationary — relative to the wall — layer
of fluid exists close to each wall. In each of these flow problems we can assume
the system to be unbounded (or, for MD purposes, periodic) in the remaining two
directions.

The viscous nature of the fluid requires sustained work to maintain motion. For
Couette flow a force must be applied to keep the walls moving relative to one
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another, whereas for Poiseuille flow a pressure head or gravity-like force acts in
the flow direction. This work is converted to heat that must be removed from the
fluid through the walls to limit the temperature rise. Temperature will vary in the
direction perpendicular to the walls, a reflection of the fact that heat generated in
the interior must be transported to the walls. This is true in both experiment and
simulation.

Once walls have been introduced explicitly into the problem the question arises
as to how realistically they need to be modeled. Real walls are complicated and
can only be represented in an average sense because roughness is essentially a
statistical notion; this observation, however, is of little help when trying to develop
a detailed microscopic simulation. All we require are walls that are sufficiently
rough to ensure nonslip flow, but the precise way by which this is achieved is
unlikely to affect the overall flow. One could, for example, use a layer of either
fixed or tethered atoms that mimic the effect of a rough wall [ash75]; by adjusting
the way the wall atoms are arranged the roughness can even be varied to a certain
extent. While this scheme offers a semblance of reality, it presents a problem if the
walls are also required to transfer heat in and out of the fluid; by using a thermostat
applied to the tethered wall atoms this issue can also be resolved, but the question
is whether such an intricate scheme is really necessary.

At the opposite extreme there are ‘stochastic’ walls [tro84]. Whenever an atom
attempts to cross a wall it is reflected back into the interior; the effects of wall
roughness and temperature are achieved by randomizing the direction of the re-
flected velocity and scaling its magnitude to match the wall temperature. The ap-
proach may appear simplistic and, if not used carefully, could interfere with the
integration of the equations of motion, especially if the region near the wall is at
relatively high density and temperature. Whether such boundary conditions actu-
ally work (they do) can only be established by trying them out.

This case study deals with Poiseuille flow; the Couette problem will be discussed
in §7.4, in the context of homogeneous systems. The analytic results for (incom-
pressible) Poiseuille flow can be summarized as follows: Assume that the two fixed
walls lie in the xy plane and that flow is in the x direction. In terms of the normal-
ized cross-stream coordinate z, where 0 < z < 1, solving the Navier—Stokes and
heat conduction equations [lan59] leads to polynomial velocity and temperature
profiles

L
v (2) = —Z[}z —(z— %)2] (7.3.1)

T() =T, + 7}7[11—6 — (=] (7.3.2)
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where L, is the channel width, T,, the wall temperature and g the external field
driving the flow. By dividing the simulation region into slices parallel to the walls
and measuring the mean flow velocity and temperature in each slice, the shear
viscosity n and thermal conductivity A can be determined by fitting second- and
fourth-degree polynomials to the results.

In order to carry out this simulation® we must first modify the neighbor-list gen-
eration function to allow for the fact that the z boundaries are no longer periodic.
In BuildNebrList (§3.4) the line

VCellWrapAll ();

is replaced by

VCellWrap (x);
VCellWrap (y);
if (m2v.z < 0 || m2v.z >= cells.z) continue;

This removes all reference to nonexistent cells beyond the walls during the search
for interaction partners.

Flow rate depends directly on the force used to drive the fluid (experimentally
the flow is more likely to be due to a pressure difference between the pipe inlet
and outlet); the value needed for a given flow rate will have to be determined by
experiment because it depends on both p and L. The variable corresponding to g
is declared as

real gravField;

and its value is included with the input data

NameR (gravField),

As part of the interaction computation the following function must be called:

void ComputeExternalForce ()
{

int n;

DO_MOL mol[n].ra.x += gravField; 5
F

The presence of hard walls calls for a change in the usual boundary process-
ing in the z direction. Whenever an atom attempts to cross either of these walls

& pr_07_1
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it is reflected back into the interior; the magnitude of the new velocity is set to
a fixed value, corresponding to the wall temperature, and the direction is ran-
domized. In addition, because the atom will have slightly overshot the wall dur-
ing the current timestep, it is moved back inside (and away from the wall by
a minute amount to avoid any numerical problems). The revised version of the
function is

void ApplyBoundaryCond ()

real vSign;
int n;

DO_MOL {
VWrap (mol[n].r, x);
VWrap (mol[n].r, y);

vSign = 0.;
if (mol[n].r.z >= 0.5 * region.z) vSign = 1.; 10
else if (mol[n].r.z < -0.5 * region.z) vSign = -1.;

if (vSign != 0.) {
mol[n].r.z = 0.49999 * vSign * region.z;
VRand (&mol([n].rv);
VScale (mol[n].rv, velMag); 15
if (mol[n].rv.z * vSign > 0.) mol[n].rv.z *= -1.;

}

}
}

Minor changes are required to use this function for the two-dimensional version of
the problem, where it is the y direction that is not periodic.

Analysis of the flow requires the construction of cross-stream v, and T profiles
based on a series of slices in the xy plane; in the case of T, each profile value
must be computed in a frame of reference moving with the mean flow in that slice.
However, rather than just show the simple profile computation, we will introduce
a more general scheme for computing properties based on a two-dimensional grid
subdivision of the simulation region, with profiles being produced as a byproduct.
This method will prove useful in later work (Chapter 15).

The following function performs the grid averaging, using cells based on the
atomic coordinates; in this example there is no y dependence, so the cell array
size can be set to unity in the y direction. Depending on the value of the argument
opCode, the function initializes the arrays used for collecting the results, accumu-
lates the results for a single measurement, or computes the final averages. The five
quantities collected for each cell (the parameter NHIST — used for flexibility — is
equal to 5) are the occupation count, the sums over the squares of the velocities
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and the sums of each of the velocity components. The final averaging produces the
cell-averaged densities, temperatures and velocities.

void GridAverage (int opCode)
{
VecR invWid, rs, va;
VecI cc;
real pSum; s
int ¢, hSize, j, n;

hSize = VProd (sizeHistGrid);
if (opCode == 0) {
for (j = 0; j < NHIST; j ++) { "
for (n = 0; n < hSize; n ++) histGrid[j][n] = 0.;
}
} else if (opCode == 1) {
VDiv (invWid, sizeHistGrid, region);
DO_MOL { 15
VSAdd (rs, mol[n].r, 0.5, region);
VMul (cc, rs, invWid);
¢ = VLinear (cc, sizeHistGrid);
++ histGrid[0] [c];
histGrid[1] [c] += VLenSq (mol[n].rv); 20
histGrid[2] [c] += mol[n].rv.x;
histGrid[3][c] += mol[n].rv.y;
histGrid[4][c] += mol[n].rv.z;
}
} else if (opCode == 2) { 2
pSum = 0.;
for (n = 0; n < hSize; n ++) {
if (histGrid[0][n] > 0.) {
for (j = 1; j < NHIST; j ++) histGrid[j][n] /= histGrid[0][n];
VSet (va, histGrid[2] [n], histGrid[3][n], histGrid[4][n]); 30
histGrid[1][n] = (histGrid[1][n] - VLenSq (va)) / NDIM;
pSum += histGrid[0] [n];

}
}
pSum /= hSize; 35
for (n = 0; n < hSize; n ++) histGrid[0] [n] /= pSum;
}

}

The grid computation requires several additional variables, namely,

VecI sizeHistGrid;
real **histGrid;
int countGrid, 1imitGrid, stepGrid;
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extra input data,

NameI (limitGrid),
NameI (sizeHistGrid),
NameI (stepGrid),

and array allocation (in A1locArrays)

AllocMem2 (histGrid, NHIST, VProd (sizeHistGrid), real);

The following code is added to SingleStep,

if (stepCount >= stepEquil &&
(stepCount - stepEquil) 7, stepGrid == 0) {
++ countGrid;
GridAverage (1);
if (countGrid 7 limitGrid == 0) { 5
GridAverage (2);
EvalProfile ();
PrintProfile (stdout);
GridAverage (0);
¥ 10
}

and to SetupJob, for initialization,

GridAverage (0);
countGrid = 0;

In this case study the grid results will be used to compute profiles, but other kinds
of processing could be carried out that utilize the spatial dependence of the data,
including graphics (Chapter 15).

The functions that extract the profiles from the grid data and output the results
follow.

void EvalProfile ()

{

int k, n;

for (n = 0; n < sizeHistGrid.z; n ++) { s
profileV[n] = 0.;
profileT[n] = 0.;

}

for (n = 0; n < VProd (sizeHistGrid); n ++) {
k = n / (sizeHistGrid.x * sizeHistGrid.y); 10

profileV[k] += histGrid[2][n];
profileT[k] += histGrid[1][n];
}
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for (n = 0; n < sizeHistGrid.z; n ++) {
profileV[n] /= sizeHistGrid.x * sizeHistGrid.y;
profileT[n] /= sizeHistGrid.x * sizeHistGrid.y;
}
}

void PrintProfile (FILE *fp)
{

real zVal;

int n;

fprintf (fp, "V profile\n");
for (n = 0; n < sizeHistGrid.z; n ++) {
zVal = (n + 0.5) / sizeHistGrid.z;
fprintf (fp, "J/.2f 7.3f\n", zVal, profileV[n]);
}
(ditto for T profile)

The arrays for holding the 7" and v, profiles

real *profileT, *profileV;

are allocated by

AllocMem (profileT, sizeHistGrid.z, real);
AllocMem (profileV, sizeHistGrid.z, real);

20

25

A three-dimensional soft-sphere system is used in this study, but the simulation
region is not cubic in shape. Since the sheared flow develops in the xz plane the
two longer region edges are assigned to the x and z directions; in this way we
achieve a relatively large area for examining the flow details while retaining the

three-dimensional nature of the system. The input data include

deltaT 0.005
density 0.8
gravField 0.1
initUcell 20 5 20
1imitGrid 100
sizeHistGrid 1150
stepAvg 2000
stepEquil 1000
stepGrid 50
stepLimit 32000
temperature 1.

The parameter gravField takes values between 0.1 and 0.4. The initial state is
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Table 7.1. Kinetic energy during the runs.

timestep g =0.1 0.2 0.3 0.4
4000 1.65 3.60 6.71 11.62
8000 3.05 9.12 18.32 31.64

12 000 4.03 12.16 22.95 36.57
16 000 4.47 12.87 22.86 35.32
20000 4.69 12.63 22.37 34.64
24000 472 12.58 22.14 34.60
28000 4.72 12.23 22.55 34.13
32000 4.70 12.20 22.53 33.96

flow speed / temperature

PN A Ta TN

PN
VS N
b Ap

Cag
Seg

Fig. 7.1. Flow-velocity and temperature profiles for g values 0.1-0.4; polynomial fits are

included.

a simple cubic lattice, so that N,, = 2000, and at the start of the run there is no

overall flow.

A certain amount of time is required for the system to achieve steady flow.
Table 7.1 shows how the mean kinetic energy initially increases with time, eventu-
ally reaching a steady value after about 16 000 timesteps (there is even a suggestion
of overshoot). The flow velocity and temperature measurements made over the last
15 000 timesteps of each run appear in Figure 7.1. Polynomial fits to the data based
on (7.3.1) and (7.3.2) are also shown. Estimates of n and A derived from the fits are

listed in Table 7.2.

position
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Table 7.2. Transport coefficients from the fits in Figure 7.1.

g n A

0.1 1.52 6.7
0.2 1.66 7.2
0.3 1.79 8.4
0.4 1.91 9.6

The fits are not forced to comply with the boundary conditions, namely, v, = 0,
T = 1, because of the limited spatial resolution of the coarse-grained measure-
ments. Other examples of problems that might complicate the analysis include a
small amount of slip at the walls and density variations across the flow. The fact
that the transport coefficients can depend on p, T and even the local shear rate,
contributes to the error when trying to fit to analytic results that assume n and A are
constant. Despite all these reservations, the fits obtained here appear remarkably
good. On the other hand, there are too many variables involved to determine the
reason why n and A vary with flow rate.

Heat transport

We now turn to another example of the use of MD to mimic a real experiment, in
this case heat flow between two parallel walls maintained at different temperatures
[ten82]. If heat is transferred only by conduction, from Fourier’s law [mcq76] the
thermal conductivity is the ratio of the rate of heat (kinetic energy) transfer across
the system to the temperature gradient,

_AE" + AEQ"
 2t,AAT/L.

(7.3.3)

where ¢, is the measurement interval, AT the temperature difference, and A =
L.L, the wall area.

The program® is similar to the previous one, differing only in that the external
force is absent and the walls are maintained at different temperatures. In the modi-
fied version of ApplyBoundaryCond shown below, the processing associated with
the z boundary has been altered to handle two distinct wall temperatures; it also
evaluates the total heat transferred in and out of the system as the impacting atoms

& pr_07_2
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exchange energy with the constant-temperature walls.

void ApplyBoundaryCond ()

{
real vNew, vSign, vvNew, vv0ld;
int n;

enTransSum = 0.;
po_moL {
VWrap (mol[n].r, x);
ViWrap (mol[n].r, y);

vSign = 0.; 10
if (mol[n].r.z >= 0.5 * region.z) vSign = 1.;
else if (mol[n].r.z < -0.5 * region.z) vSign = -1.;

if (vSign !'= 0.) {
mol[n].r.z = 0.49999 * vSign * region.z;
vv0ld = VLenSq (mol[n].rv); Is
vNew = sqrt (NDIM * ((vSign < 0.) 7 wallTempHi : wallTempLo));
VRand (&mol([n].rv);
VScale (mol[n].rv, vNew);
vvNew = VLenSq (mol[n].rv);
enTransSum += 0.5 * vSign * (vvNew - vv0ld); 20
if (mol[n].rv.z * vSign > 0.) mol[n].rv.z *= -1.;

}

}
}

New variables are

real *profileT, enTransSum, wallTempHi, wallTempLo;
Prop thermalCond;

and there are additional inputs

NameR (wallTempHi),
NameR (wallTempLo),

Heat transfer measurements require additions to EvalProps,

thermalCond.val = 0.5 * enTransSum / (deltaT * region.x *
region.y * ((wallTempHi - wallTempLo) / region.z));

and to AccumProps,

if (icode == 0) {

PropZero (thermalCond);
} else if (icode == 1) {
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Fig. 7.2. Temperature profiles for AT between 0.5 and 2.0; linear fits to the interior values
are included.

PropAccum (thermalCond);
} else if (icode == 2) {

PropAvg (thermalCond, stepAvg);
} 10

The value of thermalCond.sum that should be output by PrintSummary is the
estimate of A.
The system used is similar to the previous case, with changed input data

sizeHistGrid 1125
stepAvg 5000
stepEquil 0
stepLimit 50000
wallTempHi 1.5
wallTempLo 1.

The parameter wallTempHi ranges between 1.5 and 3.0. The simulation is started
with the fluid at uniform temperature; achieving a steady state once again requires
a certain amount of time, after which measurement can begin.

The temperature measurements made over the latter 15000 timesteps of each
run appear in Figure 7.2 (the z coordinate is normalized). Linear fits to the data
are shown; the fits ignore the three values closest to each wall where the deviations
from linearity are strongest. Estimates of A derived from the fits and the measured
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heat flow are 4.84,5.06, 5.92 and 5.75, for AT = 0.5, 1.0, 1.5 and 2.0, respectively;
these may be compared with the earlier Poiseuille flow values.

As in the case of Poiseuille flow, the fact that the system is inhomogeneous can
create problems when trying to interpret the results. Here, a kind of thermal bound-
ary layer exists close to each wall where the fluid temperature varies more rapidly
than in the bulk, so that the effective thermal gradient is overestimated. Failure to
account for this leads to A estimates that are some 40% too small. Temperature-
dependent density variations may also create problems.

7.4 Modified dynamics

Linear response theory

The question addressed by linear response theory [han86b, eva90] can be stated
in the following way. Given a system with Hamiltonian Hj, evaluate the change
in some dynamical variable B(¢) caused by an external field F,(¢) applied starting
at t = 0, whose effect on the system can be expressed schematically in terms of
atomic coordinates and momenta as

H ="Ho— A(r, p)F.(2) (7.4.1)

The actual coupling of F, to the system may be more general than the form sug-
gested here, with vector or tensor products being involved. The step function is just
one possible form of perturbation, and sinusoidal and delta functions are also of
interest.

Assuming that the effect of F, is small enough to permit a linear perturbation
treatment, an analysis based on the Liouville equation then leads to

w@»—wm»=l (B(t — tYA(0)) F(t)) dr’ (74.2)
T Jo

This result is valid in the limit F, — 0, with (.. .)o denoting an equilibrium average
evaluated in the unperturbed system. The existence of the perturbed Hamiltonian
'H is not required for this result to be true [eva84]. If, for example, the equations of
motion are

ii = pi/m+ Ci(r, p)F.(t) (7.4.3)
pi = [i + Di(r, p)F.(1) (7.4.4)

then if the phase-space distribution function f(r, p) obeys df (r, p)/dt = 0 (as
systems defined by a Hamiltonian always do — the Liouville theorem) and,
consequently,

D (Ve Ci4Vy D) =0 (7.4.5)

i
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the result also holds, but with A in (7.4.2) replaced by —J defined via
Ho=Y (pi-pi/m—Fi- f)

=—Z(—p,’-D,'/m+ﬁ'Ci)Fe(t)

=—J(r, p)F.(t) (7.4.6)

Since the applied force F, performs mechanical work on the system the temper-
ature rises, and equilibrium is never attained. To eliminate this problem [mor85] a
thermostat is included in the dynamics (as in §6.3) by adding a term « p; to (7.4.4);
constant kinetic energy is assured if the value of the Lagrange multiplier is’

. Zl(ﬁ + DiFe) - Di
> P
Transport coefficients can be evaluated by applying the appropriate force F, and

examining the behavior in the limit F, — 0. If the transport coefficient can be
expressed as the integrated autocorrelation function of some dynamical quantity J,

(7.4.7)

o =

Qzl/ﬂmﬂ®wt (7.4.8)
T Jo

then, provided the perturbation is designed so that linear response theory yields an
expression that is formally identical to the definition of the transport coefficient
(7.4.8) — in other words B = J — we obtain

(7.4.9)

The order of the limits is important, with the large ¢ results obtained at finite F,
being extrapolated to F, = 0. Since the goal is to use this definition for Q in
constant-temperature simulations, but the usual formulation of linear response the-
ory assumes constant-energy (Newtonian) dynamics, the theory must be extended
to cover this situation. When this is done [mor85, eva90] the same expressions ap-
pear, but with the averages now evaluated at constant temperature. In the remainder
of this section we will use this approach to evaluate the two transport coefficients
considered previously — shear viscosity and thermal conductivity.

Shear viscosity

We consider the case of Couette flow in which the fluid undergoes sheared flow due
to boundary walls that are in relative motion. The equations of motion used in this

+ The momenta appear in the analysis because of Hamilton’s equations of motion, but we will dispense with
them shortly.
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shear viscosity study are based on the constant-temperature dynamics described in
§6.3. A small, but significant, change is required in order to ensure that temperature
is correctly defined in the presence of flow, and this affects the velocity terms in
the Lagrange multiplier used for the thermostat.

The usual microscopic definition of temperature in terms of mean-square veloc-
ity assumes that there is no overall motion; any local flow must be subtracted from
the velocities before using them to evaluate temperature (similar situations have
been encountered in earlier case studies). The same holds true for the velocities
used in the thermostat. However, knowing the bulk flow to an accuracy suitable for
use in the equations of motion implies that the problem has already been solved;
this circularity can be removed by assuming the nature of the flow, and only later
checking to see whether consistent results are obtained. A less reliable alternative
is to evaluate local flow by means of coarse-grained averaging and then use the
results in the equations of motion; such an approach is unstable to any fluctuations
in the flow because these variations are interpreted by the equations of motion as
temperature fluctuations that must be suppressed.

In this study we impose the reasonable requirement that the MD flow obeys the
linear velocity profile known from the exact solution of the continuum problem.
Assuming it is the z boundaries that are in motion, then if the relative velocity of
the walls is y L, the shear rate dv, /dz has the constant value y. The thermostatted
equation of motion is then [eva84]

1
Fp=—f+a( —yri,x) (7.4.10)
m

The value of the Lagrange multiplier o follows from the constant-temperature
constraint,
i ii - iz-i : i - l:vij
o= - 2l m i) (fifm = yiie®) (7.4.11)
Zi("i — YrizX)
The equation of motion (7.4.10) assumes that the linear velocity profile has already
been established; creating the initial sheared flow is most readily done as part of the

initial conditions, and from the more formal point of view this amounts to applying
an impulse of the correct size and direction to each atom at t+ = 0. The sliding
boundaries, in the form of a special kind of boundary condition (see below), main-
tain the constant shear rate. The constant-temperature version of linear response
theory for this problem provides an expression for 7 based on the pressure tensor

Py,
n=—lim lim (Pr)

y—0t—>00 Y

(7.4.12)

To show that (7.4.10) corresponds to the more general form given by (7.4.3)—~(7.4.4)
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we define the momentum measured relative to the local flow
pi/m=7¥; —yri;X (7.4.13)
The first-order equations are then

Fi = pi/m+yri.x (7.4.14)
pi=fi—ypi:Xx+ap; (7.4.15)

exactly as required (if the thermostat is ignored).

The boundaries are periodic, but of a special form to accommodate the uni-
formly sheared flow [lee72]. The idea is to replace sliding walls by sliding replica
systems; layers of replicas that are adjacent in the z direction move with relative
velocity y L.x, an arrangement designed to ensure periodicity at shear rate y. An
atom crossing a z boundary requires special treatment because the x components
of position and velocity are both discontinuous — not for the replica system just
entered, but relative to the opposite side of the region into which the atom must
be inserted. The velocity change whenever a 4z boundary is crossed is FyL.x,
and the coordinate change is Fd, X, where the total relative displacement of the
neighboring replicas — a quantity only meaningful over the range (—L, /2, L,/2) —
is given by

Note that because the x coordinate changes when a z boundary is crossed, a further
correction for periodic wraparound in the x direction may be needed. Interactions
that occur between atoms separated by the z boundary require an offset value —d,
to be included in the distance computation.

When using the cell method for the interaction calculation, the range of neighbor
cells in the x direction for adjacent cells on opposite sides of the z boundary must
extend over four cells, instead of the usual three, to allow for the fact that the cells
of the sliding replicas are not usually aligned. If there are M, cells on an edge, the
additional cell offset across the positive z boundary is

Am, = |M, (1 —d,/Ly)] — M, (7.4.17)

Taking these considerations into account, the modified form of the function
ComputeForces®* is the following.

#define OFFSET_VALS \
{{0,0,0}, {1,0,0}, {1,1,0}, {0,1,0}, {-1,1,0%, \
{0,0,1}, {1,0,1}, {1,1,1}, {0,1,1}, {-1,1,1%}, \

& pr_07_3
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{-1,0,1}, {-1,-1,1}, {0,-1,1}, {1,-1,1}, {2,-1,1}, \
{2,0,1}, {2,1,1}} 5

void ComputeForces ()

{
int cellShiftX, offsetHi; 10

cellShiftX = (int) (cells.x * (1. - bdySlide / region.x)) - cells.x;
pTensorXZ = 0.;
for (mlz ...

ml = VLinear (mlv, cells) + nMol;
offsetHi = (mlv.z == cells.z - 1) ? 17 : 14;
for (offset = 0; offset < offsetHi; offset ++) {
VAdd (m2v, mlv, vOff[offset]);
VZero (shift); 20
if (mlv.z == cells.z - 1 && vOff[offset].z == 1) {
m2v.x += cellShiftX;
shift.x = bdySlide;
if (m2v.x >= cells.x) {
m2v.x -= cells.Xx; 25
shift.x += region.x;
} else if (m2v.x < 0) {
m2v.x += cells.x;

shift.x -= region.Xx;

} 30
} else {

VCellWrap (x);
}
VCellWrap (y);
VCellWrap (z); 35
m2 = ...

if (rr < rrCut) {

pTensorXZ += fcVal * dr.x * dr.z; 40

The quantity bdySlide corresponding to d, is computed at the beginning of
SingleStep,

bdySlide = shearRate * region.z * timeNow + 0.5 * region.x;
bdySlide -= (int) (bdySlide / region.x) * region.x + 0.5 * region.x;

A modified version of ApplyBoundaryCond handles the sliding boundary condi-
tions by treating z boundary crossings in the prescribed manner.
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@

void ApplyBoundaryCond (
{

int n;

DO_MOL {
VWrap (mol[n].r, x);
VWrap (mol[n].r, y);
if (mol[n].r.z >= 0.

)

5 x region.z) {

mol[n].r.x -= bdySlide;

if (mol[n].r.x < 0.5 * region.x) mol[n].r.x += region.x;

mol[n].rv.x -= shearRate * region.z;

mol[n].r.z -= regi

} else if (mol[n].r.z < -0.5 * region.z) {

on.z;

mol[n].r.x += bdySlide;

if (mol[n].r.x >= 0.5 * region.x) mol[n].r.x -

mol[n].rv.x += shearRate * region.z;

mol[n].r.z += regi
}
}
}

on.z;

20

New variables introduced are

real bdySlide, pTensorXZ, shearRate, vvSumXZ;

Prop shearVisc;

and there is an additional input data item

NameR (shearRate),

The thermostat plays a key role in this approach, with temperature being eval-
uated with respect to the local flow to adhere to the correct definition. We assume
that local flow is determined by the constant shear rate . The changes — PC inte-
gration is used — require the x components to be singled out for special treatment

(7.4.11),

void ApplyThermostat ()

real sl1, s2, vFac;
VecR as, vs;

int n;

s1 =0.;

s2 = 0.;

Dpo_MOL {
vs = mol[n].rv;
vs.x —= shearRate *
as = mol[n].ra;
as.x —= shearRate *

mol[n].r.z;

mol[n].rv.z;
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sl += VDot (vs, as);

s2 += VLenSq (vs); Is
}
vFac = - s1 / s82;
DpO_MOL {

VVSAdd (mol[n].ra, vFac, mol[n].rv);

mol[n].ra.x -= vFac * shearRate * mol[n].r.z; 20
}

}

Corresponding modification is needed in AdjustTemp. The initial velocities in-
clude the uniform shear flow; the addition to TnitVels is

mol[n].rv.x += shearRate * mol[n].r.z;

Changes to EvalProps for the evaluation of n(y) are

vvSumXZ = O0.;
po_MoL {
v = mol[n].rv;
v.x -= shearRate * mol[n].r.z;
VVAdd (vSum, v); s
vvSum += VLenSq (Vv);
vvSumXZ += (mol[n].rv.x - shearRate * mol[n].r.z) * mol[n].rv.z;

}
pTensorXZ = (pTensorXZ + vvSumXZ) * density / nMol; 10
shearVisc.val = - pTensorXZ / shearRate;

The averaging of shearVisc is included in AccumProps,

if (icode == 0) {

PropZero (shearVisc);
} else if (icode == 1) {

PropAccum (shearVisc);
} else if (icode == 2) {

PropAvg (shearVisc, stepAvg);
} 10

and the appropriate output added to PrintSummary.
The runs used for the shear viscosity measurements are based on the following

input data,

deltaT
density

o O
0 O
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Fig. 7.3. Shear viscosity for various shear rates; the equilibrium value appears at the left
edge of the graph.

initUcell 4 4 4
shearRate 0.5
stepAdjustTemp 999999
stepAvg 1000
stepEquil 1000
stepLimit 22000
temperature 1.

with the value of shearRate ranging between 0.5 and 2.5. An FCC initial state is
used, so that N, = 256.

Estimates of (y) are shown in Figure 7.3; the error bars show the standard de-
viation of the mean o ({n)), computed from the block averages that are produced
every 1000 timesteps. Taking into account the more extensive computation required
in the equilibrium case (§5.5) and the larger uncertainty in the final estimate, the
advantage of the nonequilibrium approach here is apparent. Further discussion ap-
pears in [eva90, fer91, 1ie92].

Thermal conductivity

The thermal conductivity is another example of a transport coefficient that can be
measured by a similar approach, assuming a suitable equation of motion can be
synthesized. In this case a fictitious external field F, of an unusual kind is intro-
duced [eva82, gil83]: it has the effect of driving atoms with a higher than average
energy in the direction of F,, while those with a lower energy are driven in the

¥
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opposite direction; in other words, F, generates heat flow and so, at least for small
values of the field, produces the effect of an imposed temperature difference.
The additional force acting on each atom is defined" as

fl=eFe+ 1Y fij(ry Fo)— N Zf,k(r,k F,) (7.4.18)
JGD "

where e; is the excess energy of atom i. Here, f; has been chosen so that in terms
of the heat current S (5.2.15),

> k- fl=VS-F, (7.4.19)

The force conserves total momentum because ) . f/ = 0. Since only relative dis-
tances occur in f/, and assuming the force is sufficiently weak that the system
remains homogeneous, there is nothing to prevent the use of periodic boundary
conditions — exactly the motivation for devising methods of this kind. If / = §;
and F, = F,z, then the constant-temperature version of (7.4.9) leads to the result

(S:)

e

A= lim lim (7.4.20)

Fo—0 t—o0

The thermostat is the usual one, based on the total force, so that the equations of
motion are simply

F=fi+ f +oaf (7.4.21)

For computational convenience we introduce a matrix associated with each atom i
whose elements are

Bivy=Y_ fiixTijy (7.4.22)
J (D)

so that the components of (7.4.18) can be written
fi/p. = efFe(SMZ + %(Bz uz = <B;u>)Fe (7.4.23)

where (B,,;) is just the mean of B; ..
The following variables are added to the structure Mol and evaluated exactly as
in the equilibrium case (§5.3)

VecR rfl[3];
real en;

T The signs differ from [eva82] because of the way r; j 1s defined.
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and the other variables used in this calculation are

real heatForce;
Prop thermalCond;

The only new input item is the thermal driving force F,

NameR (heatForce),

Evaluating the right-hand side of the equation of motion, again assuming the use
of PC integration, requires the additional function®

void ComputeThermalForce ()
{
VecR rfMolSumZ;
real enMolSum;
int n; 5

VZero (rfMolSumZ);

enMolSum = 0. ;

po_MoL {
VVAdd (rfMolSumZ, mol[n].rf[2]); 10
mol[n].en += VLenSq (moll[n].rv);
enMolSum += mol[n].en;

}
DpO_MOL {
VVSAdd (mol[n].rf[2], -1. / nMol, rfMolSumZ); I5
mol[n].en = 0.5 * (mol[n].en - enMolSum / nMol);
}
Dpo_MoL {
mol[n].ra.z += mol[n].en * heatForce;
VVSAdd (mol[n].ra, 0.5 * heatForce, mol[n].rf[2]); 20
}

}

The value of A(F,) is computed by a modified version of EvalProps that includes

real thermVecZ;

thermVecZ = 0. ;
DO_MOL thermVecZ += mol[n].rv.z * mol[n].en +

0.5 * VDot (mol[n].rf[2], mol[n].rv); 5
thermalCond.val = thermVecZ * density / (temperature *

heatForce * nMol);

Final averages are processed by AccumProps in exactly the same way as the
viscosity — simply change the variable names to those used here.

o pr_07_4
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Fig. 7.4. Thermal conductivity for different values of thermal driving force; the equilib-
rium result is included.

The results of this case study are based on the same input data as previously,
except that the shear rate is replaced by the parameter heatForce, with values in
the range 0.05 to 0.4. Run lengths of 84 000 timesteps are used to reduce the error
estimates. The results appear in Figure 7.4 (error bars are computed as before); the
benefits of the nonequilibrium approach are not as pronounced here as in the case
of shear viscosity, although the fact that these runs are substantially shorter than
the run of §5.5 should not be forgotten.

7.5 Further study

7.1  Examine the Couette flow problem when hard sliding walls are included
[tro84].

7.2 Compare the transport coefficients obtained by nonequilibrium methods with
those from the autocorrelation integrals [erp77]; for a given level of accu-
racy, which is more efficient, and by how much?

7.3  Consider walls with atomic structure based on atoms that are either fixed or
mobile [ash75, tho90, 1ie92]; how can the effect of a constant-temperature
wall be achieved?

7.4  Homogeneous shear MD can produce a spurious ‘string’ phase [eva86, 10092],
and homogeneous heat flow MD can become unstable for large systems
[han94]; in both cases the proposed solution is a more carefully designed
thermostat — explore this issue.
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Rigid molecules

8.1 Introduction

The elementary constituents of most substances are structured molecules, rather
than the spherically symmetric atoms treated in previous chapters. The emphasis
on simple monatomic models is justified for a number of reasons: the dynamics
are simpler, thereby making life easier for newcomers; it reflects the historical de-
velopment of the field, since the original work establishing the viability of the MD
approach as a quantitative tool dealt with liquid argon [rah64]; and once the basic
techniques have been mastered they can be extended to a variety of more complex
situations. In this chapter we discuss the first of these excursions — to molecules
constructed from a rigidly linked atomic framework. This approach is suitable for
small, relatively compact molecules, where rigidity seems a reasonable assump-
tion, but if this is not true then motion within the molecule must also be taken into
account, as we will see in later chapters. There is really no such thing as a rigid
molecule, but from the practical point of view it is a very effective simplification
of the underlying quantum problem; the model also does not account for chemical
processes — no mechanism is provided for molecular formation and dissociation.
The chapter begins with a summary of rigid-body dynamics, but with a slightly
unfamiliar emphasis. In treatises on classical mechanics Euler angles play a central
part [gol80]; while they provide the most intuitive means for describing the orienta-
tion of a rigid body and are helpful for analyzing certain exactly soluble problems,
in numerical applications they actually represent a very poor choice. Quaternions,
originally a purely theoretical development due to Hamilton, turn out to be a better
choice, and the dynamics will be described using such quantities. Linear molecules,
with only two rotational degrees of freedom rather than three, are treated separately.
A simple but useful model for liquid water is considered in the case studies; the re-
sults derived for linear molecules will be used in §13.2. The chapter concludes
with a discussion of an alternative approach that employs the molecular rotation

199



200 8 Rigid molecules won

matrices themselves as the orientation variables; this allows the leapfrog method
to be used and the approach is demonstrated on a system of tetrahedral molecules.
The methods shown here also apply when there is no translational motion and the
molecules merely rotate about fixed lattice sites (as in molecular crystals [kle86]);
the force computations are simpler because the neighbors within interaction range
never change.

8.2 Dynamics

Coordinates

Rigid-body motion can be decomposed into two completely independent parts,
translational motion of the center of mass and rotation about the center of mass.
A basic result of classical mechanics is that the former is governed by the total
force acting on the body, whereas the latter depends on the total applied torque.
Thus translation can be treated as before and we need only consider the dynamics
of rotation.

Fully rigid molecules come in two flavors, linear and nonlinear, with each molec-
ule having two or three rotational degrees of freedom respectively. The orienta-
tion of a rodlike linear molecule can be specified using two angular coordinates,
whereas the more general case requires three, and it is for the latter that Euler an-
gles are usually introduced as a particularly simple way of describing orientation.
We begin with the nonlinear case [gol80].

The Euler angles are defined in terms of a sequence of rotations of a set of
cartesian coordinate axes about the origin. The first rotation is through an angle
(measured counterclockwise) ¢ about the z axis; this is followed by a rotation 6
about the new x axis; the final rotation is through an angle i/ about the new z axis.
The full rotation matrix R is the product of the individual rotation matrices

R = R(y)R(0)R(9) (8.2.1)

and, if required, the elements of R can be expressed in terms of the Euler angles.
There are two ways of interpreting the rotation described by R. One is to consider
a vector ' and use R to obtain its components in the rotated coordinate system,
namely,

r = Rr (8.2.2)

The other is to rotate the vector, beginning with r and applying the opposite rota-
tions in reverse order by means of the transpose of R, in which case the result is
the rotated vector r' = R r.
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Quaternions

There are other ways of describing rotations, perhaps not as intuitively obvious,
but often more convenient for numerical problem solving. Here we consider a par-
ticularly useful method — Hamilton’s quaternions [gol80].

We begin by specifying the components’ of a quaternion in terms of the Euler
angles,

1 = sin(8/2) cos (¢ — ¥)/2)
q> = sin(6/2) s1.n (0 —¥)/2) (82.3)
q3 = cos(6/2) sin (¢ + ) /2)
qs = c08(8/2) cos ((¢ +¥)/2)
The components are normalized,
Z g2 =1 (8.2.4)

The inverse relations are

sinf = 2\/(q12 +4)( —qi —q3)

cosh =1 —2(412 +q22)

sing = 2(q193 + q2q4)/ sin6 (8.2.5)
cos ¢ = 2(q194 — q2q3)/ sin 6

siny = 2(q193 — q2q4)/ sin6
cos ¥ =2(q194 + q2q3)/ sinb

These results break down when 8 = 0 or m, corresponding to the coincidence of
two of the rotation axes; since ¢ and v cannot be identified separately in this case
we (arbitrarily) set ¥ = 0 to remove any ambiguity.

An alternative definition is motivated by the fact that any rotation about a fixed
point can be expressed in the form

r'=rcos¢+(c-r)ye(l1 —cos¢)+ (¢ xr)sing (8.2.6)

where ¢ is a unit vector specifying the axis of rotation and ¢ is the rotation angle.
If we define

Cm Sin(Z /2) m=1,2,3 82.7)
cos(¢/2) m==4
then
r= (ZqZ —Dr+2(q-r)q+2qg4q xXr (8.2.8)

+ There is a minor change of indices: g is replaced by g4.

¥
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While the definition based on Euler angles (8.2.3) is useful for converting to and
from the quaternion representation, the completely equivalent result (8.2.8) leads
directly to the rotation matrix

GA+49i— 5 Q@+ 4 G193 — 92qs
R=2|q»—q3qs @3+ —3% @a3+q1as (8.2.9)
N9+ 0as 04— aqs 43 +4q; — 3

One of the benefits of quaternions is obvious — no trigonometric functions are re-
quired in evaluating R. However, there is a more important advantage that will
become apparent shortly.

A more formal treatment of quaternions [gol80] can be summarized as follows.
Define a quaternion as the complex sum of a scalar and a vector,

g=qstiq (8.2.10)

The product of two quaternions is then

49 =q,9,—q -9 +i(q,9 + 99, +q x q") (8.2.11)

itself also a quaternion. The complex conjugate of ¢ is ¢* = g4 — iq, so that
normalization implies ¢§¢g* = 1. The connection with rotation is made by choosing
a vector r, defining two quaternions ¥ = 0+ ir and 7/ = 0 4 ir’, where r and r’
are related as above, and with a little algebra arriving at the result 7/ = grg*. In
this way quaternions are seen to provide the correct answers.

There are other ways of describing rotations, and even the quaternions can be
expressed in an alternative fashion as complex 2 x 2 matrices, but our interest
is confined to the set of real numbers {g,,}. The next step is to demonstrate the
important role of quaternions in the dynamics of rigid bodies.

Equations of motion for nonlinear molecules

Rigid-body dynamics generally deals with two coordinate frames, one fixed in
space, the other attached to the principal axes of the rotating body. The expression
for the angular velocity @ measured in the body-fixed frame, in terms of Euler
angles, is a familiar one [gol80],

sin @ sin ¢ cosyy O é

C()/

X

a)fV = |sinfcosy —siny O 6 (8.2.12)
w!, cos 6 0 1) \v

Texts on mechanics tend to ignore the fact that the matrix in this equation is sin-
gular when sin@ = 0. Since the inverse of the matrix appears in the equations of
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motion, the numerical treatment is destined to become unstable whenever 6 even
approaches O or 7. The simplest and most elegant way to avoid this inconvenience
is to abandon Euler angles and use quaternions instead [eva77a, eva77b]; this elim-
inates the problem of singular matrices.

The angular velocity @' is related to by

@, ¢
Ol =ow | P (8.2.13)
; q3
0 44
where

qa q3 —q2 —qi
W = —4q3 q4 91 —q2 (8.2.14)
92 —qi1 q4  —q3

q1 q> q3 q4

is an orthogonal matrix. This result [cor60, eva77a] follows from the fact that if

F(1) = q()F0)g* @) (8.2.15)
then the time derivative is

F(6) = GOF(O)F" (1) + GOF )" (1) (8.2.16)
Now

7(0) =g*(0)F (t)g () (8.2.17)
and, dropping the explicit ¢ dependence for convenience,

44" = —4q* (8.2.18)
so that

F =g —7gq* (8.2.19)
Thus

F=uxr—rxu=2uxr (8.2.20)

where u is the vector part of the quaternion i = qLEj*; the scalar part is zero. In
other words, since 7 = @ X r,

@ =2u (8.2.21)

¥
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The result (8.2.13) follows immediately because
i = GG = G*q (8.2.22)
In a space-fixed coordinate frame, torque equals the rate of change of angular

momentum,

dl

n=—

dt

Given that the general relation between time derivatives in space- and body-fixed
coordinate frames is

(dl) (dl> + l (8.2.24)
— =\ — ® X L.
dt space dt body

the body-fixed version of (8.2.23) can be written

(8.2.23)

ny =l + ol — ol (8.2.25)

with corresponding expressions for the other two components. In the body-fixed

frame, each of the components of / has the simple form /, = / !, where [ is one
component of the (diagonal) inertia tensor, so that (8.2.25) becomes

L&, =n,+, —I)ow) (8.2.26)

with similar equations for the other components. These are the Euler equations
describing the rotation of a rigid body.
The quaternion accelerations are obtained from

i =qG+q*q (8.2.27)
Premultiply by ¢ and rearrange to get
q=4G -39 (8.2.28)

or, equivalently,

s/

X
Plotwr | 9 (8.2.29)
q3 w,
Ga -234,

We can eliminate @’ from the right-hand side of (8.2.29) by using the Euler equa-
tions, and if the components of @’ that then appear are replaced by linear combi-
nations of the ¢; from (8.2.13), the result is a set of equations of motion expressed
entirely in terms of quaternions and their derivatives [pow79, rap85]; Euler angles
and angular velocities no longer play any part in the computation.
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A new C structure type is introduced to hold the quaternion components®

typedef struct {
real ul, u2, u3, u4;

} Quat;

and several useful operations on quaternions are defined,

#define @Set(q, s1, s2, s3, s4) \
(q).ul = s1, \
(@) .u2 = s2, \
(@) .u3 = s3, \
(q).ué = s4 5
#define (Zero(q) \
@Set (q, 0., 0., 0., 0.)
#define QScale(q, s) \
(@) .ul *= s, \
PPN 10
#define QSAdd(q1, q2, s3, q3) \
(g1).ul = (g2).ul + (s3) * (g3).ul, \
#define @LenSq(q) \
(Sqgr ((q).u1) + Sgr ((q).u2) + Sqr ((q).u3) + \ Is
Sqr ((q).u4))
#define QMul(ql, q2, q3) \
(q1).ul = (q2).u4 * (q3).ul - (g2).u3 * (q3).u2 + \
(g2).u2 * (q3).u3 + (q2).ul * (q3).u4, \
(q1).u2 = (q2).u3 * (q3).ul + (q2).u4 * (q3).u2 - \ 20
(g2).ul * (q3).u3 + (gq2).u2 * (q3).u4, \
(q1).u3 = - (gq2).u2 * (g3).utl + (gq2).ul * (q3).u2 + \
(g2).u4 * (g3).u3 + (q2).u3 * (q3).u4, \
(q1).u4 = - (g2).ul * (q3).ul - (g2).u2 * (q3).u2 - \
(g2).u3 * (g3).u3 + (q2).ué * (q3).u4 25

An extended form of the Mol structure is used to hold all the molecular state in-
formation; the elements include the quaternion components, their first and second
derivatives, other values required for the PC integration, and the torque on the
molecule with components expressed in the body-fixed coordinate frame,

typedef struct {
VecR r, rv, ra, ral, ra2, ro, rvo;
Quat q, qv, qa, gal, ga2, qo, qvo;
VecR torq;
} Mol; s

o pr_08_1
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The function for evaluating the quaternion accelerations — in other words, the
rotational equations of motion — is the following, with mInert a vector whose
components are /., I, and /..

void ComputeAccelsQ ()

{
Quat gs;
VecR w;
int n; s
DOo_MOL {
ComputeAngVel (n, &w);
@Set (gs,
(mol[n].torq.x + (mInert.y - mInert.z) * w.y * w.z) / mlnert.x, i
(mol[n].torq.y + (mInert.z - mInert.x) * w.z * w.x) / mInert.y,
(mol[n].torq.z + (mInert.x - mInert.y) * w.x * w.y) / mInert.z,
-2. * QLenSq (mol[n].qv));
@Mul (mol[n].qa, mol[n].q, gs);
@Scale (mol[n].qga, 0.5); 1s
}
}

The angular velocities w required here are computed by a function that is called
separately for each molecule,

void ComputeAngVel (int n, VecR *w)
{
Quat qt, qvt;

qvt = mol[n].qv; 5
qut.u4 *= -1.;

QMul (qt, qvt, mol[n].q);

@Scale (qt, 2.);

VSet (*w, qt.ul, gt.u2, qt.u3);

The interactions between rigid molecules are usually expressed as sums of con-
tributions from pairs of ‘interaction sites’ on different molecules. It is sufficient to
know the center of mass separation of the two molecules and their orientations in
order to be able to compute the interactions between the site pairs — the subject is
discussed in §8.3. Assuming that the site forces have already been computed, the
forces and torques acting on the molecules as a whole are evaluated by the function
given below. If k labels the interaction sites, and r; is the location of a site relative
to the center of mass of the molecule to which it belongs, then the total torque
acting on the molecule is ) e T X S
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A new C structure associated with the interaction sites

typedef struct {
VecR f, r;
} Site;

is used to hold the current coordinates of the site and the results of the force calcu-
lation. Rotation matrices are represented by the structure

typedef struct {
real ul9];
} RMat;

The variable sitesMol is the number of interaction sites in each molecule (all
molecules are assumed identical for simplicity). The torques are evaluated in the
space-fixed coordinate frame and then transformed to the body-fixed frame as re-
quired by the equations of motion.

void ComputeTorgs ()

{
RMat rMat;
VecR dr, t, torgS;
int j, n; 5
po_MoL {
VZero (mol[mn].ra);
VZero (torgS);
for (j = 0; j < sitesMol; j ++) { 10
VVAdd (mol[n].ra, site[n * sitesMol + jl.f);
VSub (dr, site[n * sitesMol + j].r, mol[n].r);
VCross (t, dr, site[n * sitesMol + j].f);
VVAdd (torgS, t);
} s
BuildRotMatrix (&rMat, &mol[n].q, 0);
MVMul (mol[n].torq, rMat.u, torgS);
}
F

The rotation matrix for each molecule (or its transpose, as required below) is con-
structed from the quaternion components by BuildRotMatrix and stored in col-
umn order as a linear array.

void BuildRotMatrix (RMat *rMat, Quat *q, int transpose)

{
real p[10], tql4], s;
int k, k1, k2;

tq[0] = gq->ui;
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tql1] = g—>u2;

tql2] = g—>u3;

tql[3] = g->u4;

for (k =0, k2 = 0; k2 < 4; k2 ++) { 10
for (ki1 = k2; k1 < 4; ki1 ++, k ++) p[k] = 2. * tq[k1] * tq[k2];

}

rMat->u[0] = p[0] + p[9] - 1.;
rMat->ul4] = p[4] + p[9] - 1.;

rMat->u[8] = p[7] + p[9] - 1.; 15
s = transpose 7 1. : -1.;

rMat->u[1] = p[1] + s * p[8];

rMat->u[3] = p[1] - s * p[8];

rMat->u[2] = p[2] - s * p[6];

rMat->u[6] = p[2] + s * p[6]; 20
rMat->u[5] = p[5] + s * p[3];

rMat->u[7] = p[5] - s * p[3];

The interaction site coordinates must be computed in preparation for the force
calculation. These coordinates are specified when the molecule is in a predefined
reference orientation and are kept in the structure

typedef struct {
VecR r;
int typeF;

} MSite;

together with an element typeF that is used to distinguish individual sites for the
force evaluation. Computation of interaction site coordinates is as follows, where
mSite is an array of MSite structures.

void GenSiteCoords ()
{
RMat rMat;
VecR t;
int j, n; s

DpO_MOL {
BuildRotMatrix (&rMat, &mol[n].q, 1);
for (j = 0; j < sitesMol; j ++) {
MVMul (t, rMat.u, mSite[j].r); 10
VAdd (site[sitesMol * n + jl.r, mol[n].r, t);
}
}
F
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The operation for multiplying a matrix by a vector, here used in rotating the molecule
from its predefined reference orientation to the current state, is defined by

#define MVMul(vl, m, v2) \
(vl).x = m[0] * (v2).x + ) [3] * (v2).y + (m)[6] * (v2).z, \
(vi).y = m)[1] * (v2).x + (m)[4] * (v2).y + @) [7] * (v2).z, \
(vl).z = m)[2] * (v2).x + (m)[5] * (v2).y + (m)[8] * (v2).z

Numerical integration of these second-order equations uses the same PC method
as the translational equations. The integration functions, named PredictorStepQ
and CorrectorStep(, are based on the translational functions of §3.5 and only
differ in the name and number of variables processed.

#define PQ(t) \
PCR4 (mol[n].q, mol[n].q, mol[n].qv, mol[n].qa, \
mol[n].qal, mol[n].qa2, t)
#define PQV(t) \
PCV4 (mol([n].q, mol[n].qo, mol[n].qv, mol[n].qa, \ 5
mol[n].qal, mol[n].qa2, t)
#define CQ(t) \
PCR4 (mol[n].q, mol[n].qo, mol[n].qvo, mol[n].qa, \
mol[n].qal, mol[n].qa2, t)
#define CQV(t) \ 10
PCV4 (mol[n].q, mol[n].qo, mol[n].qv, mol[n].qa, \

mol[n].qal, mol[n].qa2, t)

void PredictorStepQ ()
{ 15
Do_MOL {
mol[n].qo = moll[n].q;
mol[n].qvo = mol[n].qv;
PQ (u1); 20
PQV (ul);
. (ditto for u2, u3, u4) ...
mol[n].qa2 = mol[n].qal;
mol[n].qal = mol[n].qa;

} 25
}
void CorrectorStepQ ()
{
P 30
po_MoL {
cQ (ul);
CQV (u1);
} 35




210 8 Rigid molecules @ i

Normalization of the quaternions must be enforced separately to prevent gradual
accumulation of numerical error (the error over a single timestep is very small); the
adjustments can be carried out after each integration step.

void AdjustQuat ()
{

real qij;

int n;

DO_MOL {
qi = 1. / sqrt (QLenSq (mol[nl.q));
QScale (mol[n].q, qi);
}
} 10

The contribution of the rotational motion to the kinetic energy is computed by
an addition to EvalProps,

VecR w;

vvgSum = 0. ;

po_MoL {
ComputeAngVel (n, &w); 5
vvgSum += VWLenSq (mInert, w);

}

where ViWLenSq is defined as

#define VWLenSq(vl, v2) VWDot(vl, v2, v2)

#define VWDot(vl, v2, v3) \
((vl).x * (v2).x * (v3).x + (v1).y * (v2).y * (v3).y + \
(vl).z * (v2).z * (v3).z)

Tests based on momentum and energy conservation serve as partial checks on
the correctness of the calculation. Angular momentum is not conserved however;
this is a consequence both of the abrupt changes in angular momentum whenever
a molecule crosses a periodic boundary and interaction wraparound. In order to
verify angular momentum conservation, an isolated cluster of molecules would
have to be simulated in a region that is nominally unbounded, thus eliminating the
effects of periodicity.

Equations of motion for linear molecules

Linear rigid bodies are treated in a different way, since there are only two rotational
degrees of freedom rather than three. The torque on a linear molecule can be written
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as a sum over interaction sites,

n=Zrkxfk=stdkfk=sxg (8.2.30)
k k

where the orientation is defined by s, the unit vector along the molecular axis, and
where d; is the signed distance along the axis of each interaction site from the
center of mass. In the linear case, angular momentum is simply / = /w, so that the
equations of motion are

Io=sxg (8.2.31)
S=wXxS§ (8.2.32)

There is also a two-dimensional version of this problem, in which s is confined to
the xy plane and the only nonzero component of ® is ;.

We have a choice of either using this pair of first-order equations, or eliminating
® to obtain a single second-order equation

S=0xs+wxS§
=1 sxg) xs+wx(®xs)
=I1"'g—(I""(s - &) +5)s (8.2.33)

where we have used the results - s = 0 — a consequence of (8.2.31) — and §2 =
®”. Here, it is important that the initial state be defined consistently, to ensure
that (8.2.32) is satisfied. In both cases the length of s must be adjusted at regular
intervals (not necessarily at every timestep, although this causes no harm) to avoid
any gradual buildup of error.

The PC integration functions (§3.5) for the first-order equations (8.2.31)—(8.2.32)
follow (the second-order equation is used in §13.2). Here, mo1[] .svand mol[] .sa
denote w and @ (for the second-order equation they stand for § and §); mo1 [] . svxs
and related quantities hold the current and previous values of @ x s appearing in
(8.2.32).

#define PC(r, ro, v, vl, v2, t) \
r.t =ro.t +w ¥ (c[0] * v.t + c[1] * vi.t + c[2] * v2.t)

void PredictorStepF ()

{ 5
real c[] = {23., -16., 5.}, div = 12., w;
int n;

w = deltaT / div;

DO_MOL { 10
so[n] = mol[n].s;
svo[n] = mol[n].sv;
PC (mol[n].s, mol[n].s, mol[n].svxs, mol[n].svxsl,

¥
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mol[n].svxs2, x);
PC (moll[n].sv, mol[n].sv, mol[n].sa, mol[n].sal, mol[n].sa2, x); 15
(ditto for y and z components) ...
mol[n].sa2 = mol[n].sal;
mol[n].sal = mol[n].sa;
mol [n].svxs2 = mol[n].svxsi1;

mol[n].svxsl = mol[n].svxs; 20
VCross (mol[n].svxs, mol[n].sv, mol[n].s);
}
}
void CorrectorStepF () 25
{
real c[] = {5., 8., -1.}, div = 12., w;
int n;
w = deltaT / div; 30
DO_MOL {
PC (mol[n].s, soln], mol[n].svxs, mol[n].svxsl, mol[n].svxs2, x);
PC (moll[n].sv, svo[n], mol[n].sa, mol[n].sal, mol[n].sa2, x);
(ditto for y and z components) ...
VCross (moll[n].svxs, mol[n].sv, mol[n].s); 35
}
F

The contribution of the rotational motion to the kinetic energy is once again com-
puted by code added to EvalProps,

vvsSum = 0. ;
DO_MOL vvsSum += mInert * VLenSq (mol[n].sv);
vvSum += vvsSum;

Temperature control

In the same way that the constant-temperature constraint was applied to simple
atoms (§6.3), it can also be applied to nonlinear rigid molecules, but now the con-
straint must be based on the combined translational and rotational kinetic energy.
For each molecule we include a Lagrange multiplier term in the translational equa-
tions as before, and a term of the general form o/, /. must be added to each Euler
equation (8.2.26). Since the total kinetic energy is

NuEx = im Y 2+ 13" 1Y o)’ (8.2.34)
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with ) denoting a sum over the vector components, by setting Ex = 0 we obtain

Z - fi+ Zw - n;
o= (8.2.35)

er +ZI Zw

where f; and n; are the total force and torque on molecule ;. When using quater-
nions, the kth component of the right-hand side of the equation of motion (8.2.29)
gains an extra term (we omit the molecule index) +agy.

A similar expression for the Lagrange multiplier also applies in the case of linear
molecules. The equation for « is similar to (8.2.35), but involves sums over either
®; - n; and Iwiz, ors;-[gi—(si-g+ Is )s;] and Is , depending on which form of
the equation of motion is used.

The version of ApplyThermostat needed for nonlinear rigid molecules (assum-
ingm =1)1is

void ApplyThermostat ()

{

real sl1, s2, vFac;

VecR w;

int n; s

s1 =0.;

s2 = 0.;

Dpo_MOL {
sl += VDot (mol[n].rv, mol[n].ra); 10
s2 += VLenSq (mol[n].rv);

}

DO_MOL {
ComputeAngVel (n, &w);
s1 += VDot (w, mol[n].torq); s
s2 += VWLenSq (mInert, w);

}

vFac = - s1 / s82;

DpO_MOL {
VVSAdd (mol[n].ra, vFac, mol[n].rv); 20
@SAdd (mol[n].qa, mol[n].qa, vFac, mol[n].qv);

}

F

while the changes for the linear case are

Dpo_MOL {
s1 += mInert * VDot (mol[n].sv, mol[n].sa);
s2 += mInert * VLenSq (mol[n].sv);
} s
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po_MOL {
VVSAdd (mol[n].sa, vFac, mol[n].sv);
} 10

Temperature adjustment to correct numerical drift is applied separately to the
translational and rotational motion. The addition to AdjustTemp for the nonlinear
case, assuming a constant-temperature simulation, is

VecR w;

vvgSum = 0. ;

Dpo_MOL {
ComputeAngVel (n, &w); 5
vvqSum += VWLenSq (mInert, w);

}

vFac = velMag / sqrt (vvqSum / nMol);

DO_MOL Q@Scale (mol[n].qv, vFac);

and for linear molecules it is

vvsSum = O.;

DO_MOL vvsSum += mInert * VLenSq (mol[n].sv);
vFac = velMag / sqrt (1.5 * vvsSum / nMol);
DO_MOL VScale (mol[n].sv, vFac);

In both cases the value of velMag (see below) determines the correct kinetic energy
value.

Initial state

The functions listed below are called from SetupJob to handle the initialization
of the rotational variables. Here we consider only nonlinear molecules; the linear
case will be treated in §13.2. Molecular orientation is randomly assigned (atanZ2is
a standard library function), with each angular velocity having a fixed magnitude
based on the temperature (through the quantity velMag) and a randomly chosen
direction. Angular coordinates and velocities are converted to quaternion form,
and angular accelerations used by the PC method are set to zero.

void InitAngCoords ()
{
VecR e;
real eAngl[3];
int n; s
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po_MoL {
VRand (&e);
eAng[0] = atan2 (e.x, e.y);
eAng[1] = acos (e.z); 10
eAng[2] 2. * M_PI * RandR ();
EulerToQuat (&mol[n].q, eAng);
}

}

void EulerToQuat (Quat *ge, real *eAng)
{

real al, a2, a3;

al = 0.5 * eAng[1]; 20
a2 = 0.5 * (eAng[0] - eAng[2]);
a3 = 0.5 * (eAng[0] + eAng[2]);
@Set (*ge, sin (al) * cos (a2), sin (al) * sin (a2),
cos (al) * sin (a3), cos (al) * cos (a3));

} 25
void InitAngVels ()
{
Quat qe;
VecR e; 30
real f;
int n;
po_MOL {
VRand (&e); 35
@Set (qe, e.x, e.y, e.z, 0.);
@Mul (mol[n].qv, mol[n].q, qe);
f = 0.5 * velMag / sqrt (VWLenSq (mInert, e));
@Scale (mol[n].qv, f);
} 40
F
void InitAngAccels ()
{
int n; 45
DpOo_MOL {
QZero (mol[n].qa);
@Zero (mol[n].qal);
QZero (mol[n].qa2); 50
}
F

The translational variables are initialized in exactly the same way as for atomic
fluids.
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8.3 Molecular construction

General features

Now that we have seen how to formulate and solve the dynamical problem we turn
to the details of the molecules themselves. Interactions between rigid molecules are
most readily introduced by specifying the locations of the sites in the molecule at
which the forces act. The total force between two molecules is then simply the sum
of the forces acting between all pairs of interaction sites. The amount of work is
proportional to the square of the number of sites, so this number should be kept as
small as possible. The potential function used for each pair can be defined indepen-
dently, but molecular symmetry reduces the number of functions needed. Interac-
tion sites may be associated with the positions of the nuclei, but this is not essential
and often just serves as the initial version of a model. There is considerable scope
for fine-tuning the structure and interactions in this engineering-like approach, with
the simulations themselves being used to refine the models; for further details see
[gra84, lev92].

Molecular fluids require substantially more computation per molecule than their
atomic counterparts because of the need to consider all pairs of interaction sites.
Coulomb interactions are usually involved, so the cutoff distance should be as
large as possible, again adding to the computational effort; the specialized meth-
ods available for such long-range forces (see Chapter 13) are not used here. The
fact that the interaction range now extends over a substantial fraction of the sim-
ulation region can erase the benefits of the cell and neighbor-list methods, so that
the all-pairs approach is often the method of choice for systems that are not too
large.

Model water

The most popular molecular fluid for MD exploration, for obvious reasons, is wa-
ter. Not only because of its ubiquity and importance, but also for its many unusual
features that defy simple explanation, water has long been associated with MD
simulation [rah71, sti72, sti74] and numerous models have been proposed to help
understand the microscopic mechanisms underlying the behavior.

For our case study we will use one of several available rigid models, the TIP4P
model [jor83]. The model molecule, shown in Figure 8.1, is based on four interac-
tion sites located in a planar configuration, two of which — labeled M and O — are
associated with the oxygen nucleus, and two — labeled H — with the protons; the
site M lies on the symmetry axis, between O and the line joining the H sites. The
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Fig. 8.1. The TIP4P water molecule; site coordinates are given in the text.

distances and angle required to fully specify the site coordinates are

rog = 0.957 A
rom = 0.15A (8.3.1)
/HOH = 104.5°

The interaction energy between two molecules i and j consists of a double sum
over the interaction sites of both molecules; the terms in the sum, indexed by & and
[, allow for Coulomb interactions between the electric charges assigned to the sites,
as well as contributions of LJ type,

CIkCII Akl Cu
=y Z( o — —6) (8.3.2)

kei lej T

The charges associated with the sites, while maintaining some resemblance to the
actual molecule, are generally regarded as parameters that can be adjusted to fit
known molecular properties, such as the multipole moments. The corresponding
force is

12A 6C
fu _ ZZ(CI;% ki ﬂgkl)rk[ (8.3.3)
kl

kei lej i Tk

The charges appearing in the potential function are

qu =0.52¢
go=0 (8.3.4)
gm = —2qu

where e = 4.803 x 107! esu; to convert to units used experimentally note that ¢? =
331.8 (kcal/mole) A. As part of the molecular design process, the negative charge
has been shifted away from the O site by a small amount, to the M site introduced

¥
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specifically for this purpose. The parameters in the LJ part of the potential, which
acts only between O sites, are
Aoo = A = 600 x 10° (kcal/mole) A"

(8.3.5)
Coo = C = 610 (kcal/mole) A°

We now switch to reduced MD units appropriate to the problem. Define the
length unit o to be the value of r for which

A C

=0 (8.3.6)
namely

o= (A4/C)"° (8.3.7)

and the unit of energy to be
€= A/4c"? (8.3.8)

The mass unit is the mass of the water molecule, 2.987 x 10723 g. Physical and
reduced units are then related by o = 3.154 A, € = 0.155 kcal/mole (or 1.08 x
10714 erg/molecule) and the unit of time is 1.66 x 10712 5. We also define a reduced
unit of charge e in terms of which gy = 1, and for convenience we let

b=¢é*/eo (8.3.9)

In reduced units, b = 183.5.

The coordinates of the interaction sites when the molecule is situated in a ref-
erence state in the yz plane with its center of mass at the origin are (in reduced
units)

ro = (0, 0, —0.0206)
rv = (0, 0, 0.0274) (8.3.10)
rg = (0, £0.240, 0.165)

Masses denoted by mo and my are associated with the O and H sites, and mgo =
16my; in reduced units mo + 2my = 1. The principal moments of inertia are

I, = mozd + 2myzi; = 0.0034

(8.3.11)
I, = ZmHyIZ{ = 0.0064

and, of course, I, =1, + I..
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Interaction calculations

In terms of the reduced units just introduced, the potential energy and force contri-
butions from the different pairs of interaction sites, namely, LJ between the O sites
and Coulomb between all pairs of charges, are

00: u=40""—r"  f=480"" 3 r

MM: u=4b/r f=b/rr

(8.3.12)
MH: u=—-2b/r f=(=2b/rdr
HH: u=0b/r f=®/rdHr

The function shown below computes these interactions using an all-pairs ap-
proach and assuming periodic boundaries. The different kinds of interaction site
are assigned numerical types 1, 2 and 3, corresponding to O, M and H; these values
appear in the element typeF in the MSite structure. The decision as to whether a
pair of sites lies within the cutoff range is based on the distance between the centers
of mass of the molecules containing the sites, and not on the distance between the
sites themselves; not only is this more efficient computationally than testing pairs
of sites individually, but it means that there are no partially interacting molecules.

void ComputeSiteForces ()

{
VecR dr, shift;
real fcVal, rr, rrCut, rri, rri3, uVal;
int j1, j2, mi, m2, msl, ms2, n, typeSum; 5

rrCut = Sqr (rCut);

for (n = 0; n < nMol * sitesMol; n ++) VZero (site[n].f);
uSum = 0.;
for (m1 = 0; ml1 < nMol - 1; m1 ++) { 10

for (m2 = m1 + 1; m2 < nMol; m2 ++) {
VSub (dr, mol[mi].r, mol[m2].r);
VZero (shift);
VShiftAll (dr);
VVAdd (dr, shift); Is
rr = VLenSq (dr);
if (rr < rrCut) {
msl = ml * sitesMol;
ms2 = m2 * sitesMol;
for (j1 = 0; j1 < sitesMol; j1 ++) { 20
for (j2 = 0; j2 < sitesMol; j2 ++) {
typeSum = mSite[j1].typeF + mSite[j2].typeF;
if (mSite[j1].typeF == mSite[j2].typeF || typeSum == 5) {
VSub (dr, site[ms1 + ji].r, site[ms2 + j2].r);
VVAdd (dr, shift); 25
rr = VLenSq (dr);
rri = 1. / rr;



220 8 Rigid molecules
switch (typeSum) {

case 2:
rri3 = Cube (rri);
uVal = 4. * rri3 * (rri3 - 1.);
fcVal = 48. * rri3 * (rri3 - 0.5) * rri;
break;

case 4:

uVal = 4. * bCon * sqrt (rri);
fcVal = uVal * rri;
break;
case 5:
uVal = -2. * bCon * sqrt (rri);
fcVal = uVal * rri;
break;
case 6:
uVal = bCon * sqrt (rri);
fcVal = uVal * rri;
break;
}
VVSAdd (site[ms1 + j1].f, fcVal, dr);
VVSAdd (site[ms2 + j2].f, - fcVal, dr);
uSum += uVal;

Further details

New variables appearing in this simulation are

Site *site;

MSite *mSite;

VecR mInert;

real bCon, vvqSum;
int sitesMol;

and in SetParams we set

sitesMol = 4;

The additional array allocations in A1locArrays are

AllocMem (site, nMol * sitesMol, Site);
AllocMem (mSite, sitesMol, MSite);

i

30

40

45

50

55
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The details of the molecule are specified in the function DefineMol, called from
SetupJob,

void DefineMol ()

{
int j;
for (j = 0; j < sitesMol; j ++) VZero (mSitel[j].r); 5
mSite[0].r.z = -0.0206;
mSite[1].r.z = 0.0274;
mSite[2].r.y = 0.240;
mSite[2].r.z = 0.165;
mSite[3].r.y = - mSite[2].r.y; 10
mSite[3].r.z = mSite[2].r.z;

VSet (mInert, 0.00980, 0.00340, 0.00640);
bCon = 183.5;

mSite[0] .typeF =
mSite[1].typeF
mSite[2].typeF
mSite[3].typeF

non
W W N =

..

The full sequence of function calls in SingleStep used for the interaction com-
putations and integration is

PredictorStep ();

PredictorStepQ ();

GenSiteCoords ();

ComputeSiteForces ();

ComputeTorgs (); ’
ComputeAccelsq ();

ApplyThermostat ();

CorrectorStep ();

CorrectorStepq ();

AdjustQuat (); 10
ApplyBoundaryCond ();

A few additional items complete the description: The interaction cutoff is at 7, =
7.5 A, or 2.38 in reduced units; this value of rCut can be added to the input data. A
density of 1 g/cm? is equivalent to a unit cell spacing of 3.103 A for an initial cubic
lattice arrangement, or 0.983 in reduced units. Since the unit of energy corresponds
to €/kg = 78.2K, a typical temperature of 298 K corresponds to 3.8 in reduced
units. The timestep used is Ar = 0.0005; in real units this equals 8 x 1071¢s.
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8.4 Measurements

Types of measurement

A model such as the one described here has a variety of properties that are of
experimental relevance, and others that, although not directly measurable in the
laboratory, are able to contribute towards understanding the behavior at the micro-
scopic level. We will consider two examples of the former and one of the latter, all
in connection with pure water. A particularly important use of water models is in
the study of solvation of other kinds of molecules, ranging from simple atoms and
ions to complex molecules such as biopolymers; we will not attempt to delve into
this extensive subject [bro88, lev92].

The first of the measurements involves the site—site RDFs. Here, rather than
simply examining the distribution of center of mass separations, we study RDFs
associated with distinct sites on the molecules; together, these RDFs are able to
provide clues to local molecular arrangement beyond just the distances themselves.
The second measurement deals with rotational diffusion by looking at the rate at
which molecules undergo orientational change, an important aspect of certain kinds
of spectroscopic study. The final feature examined, the one without a direct experi-
mental counterpart, is the nature of the hydrogen-bond network formed by the fluid.

Other properties, including those of thermodynamic interest, as well as the di-
electric constant, can also be measured, although they will not be considered here.
A quantity such as the pressure, normally expressed in terms of the virial sum,
needs to be redefined for use with rigid molecules. There are in fact two ways
of dealing with the virial which, for equilibrium systems, are readily shown to be
completely equivalent [cic86b]; it can be expressed either as a sum involving just
the intermolecular forces and center of mass separations, ignoring all the internal
details, or as a sum over all pairs of interaction sites in each pair of molecules.

Radial distribution functions

When evaluating the RDF we consider three distinct site—site distribution functions
that are accessible experimentally — goo, gou and guyy. For computational purposes
we assign numerical labels to the sites to simplify the task of deciding which site
pairs contribute to which function; this is done by adding an element typeRdf to
MSite and initializing the values in DefineMol,

mSite[0].typeRdf = 1;
mSite[1].typeRdf =
mSite[2].typeRdf =
mSite[3].typeRdf

oo
NN
. e ~
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The array required for the RDFs is

real **histRdf;

where, unlike §4.3, histRdf is now a two-dimensional array that provides for
several distinct RDF measurements; the allocation (in A1locArrays) is

AllocMem2 (histRdf, 3, sizeHistRdf, real);

The modified version of EvalRdf is as follows.

void EvalRdf ()
{
VecR dr, shift;
real deltaR, normFac, rr;
int j1, j2, k, ml, m2, msl, ms2, n, rdfType, typeSum; 5

if (countRdf == 0) {
for (k= 0; k < 3; k ++) {
for (n = 0; n < sizeHistRdf; n ++) histRdf[k][n] = 0.;
} 10
}
deltaR = rangeRdf / sizeHistRdf;
for (m1 = 0; m1 < nMol - 1; ml ++) {
for (m2 = ml1 + 1; m2 < nMol; m2 ++) {
VSub (dr, mol[ml].r, mol[m2].r); Is
VZero (shift);
VShiftAll (dr);
VVAdd (dr, shift);
rr = VLenSq (dr);
if (rr < Sqr (rangeRdf)) { 20
msl = ml * sitesMol;
ms2 = m2 * sitesMol;
for (j1 = 0; j1 < sitesMol; j1 ++) {
for (j2 = 0; j2 < sitesMol; j2 ++) {
typeSum = mSite[j1].typeRdf + mSite[j2].typeRdf; 25
if (typeSum >= 2) {
VSub (dr, site[ms1l + j1].r, site[ms2 + j2].r);
VVAdd (dr, shift);
rr = VLenSq (dr);
if (rr < Sqr (rangeRdf)) { 30
n = sqrt (rr) / deltaR;
if (typeSum == 2) rdfType = 0;
else if (typeSum == 3) rdfType = 1;
else rdfType = 2;
++ histRdf [rdfTypel [n]; 35
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} 40
}
}
++ countRdf;
if (countRdf == limitRdf) {
normFac = VProd (region) / (2. * M_PI * Cube (deltaR) * 45
Sqr (nMol) * countRdf);
for (k = 0; k < 3; k ++) {
for (n = 0; n < sizeHistRdf; n ++)
histRdf [k] [n] *= normFac / Sqr (n - 0.5);
} 50
PrintRdf (stdout);
countRdf = 0;

It is not necessary to recompute the site coordinates after the corrector step, since
the values computed for use in the interaction calculations are adequate for this
purpose. Because there are two H sites per molecule, and we have not allowed for
this symmetry in the RDF computation, both goy and gyy must be divided by four.
This can be done by the function PrintRdf, which must also be modified to output
three sets of RDF measurements.

The run used to produce the RDF results involves the following input data:

deltaT 0.0005
density 0.98
initUcell 6 66
1imitRdf 100
rangeRdf 2.5
rCut 2.38
sizeHistRdf 125
stepAdjustTemp 1000
stepAvg 200
stepEquil 1000
stepLimit 16000
stepRdf 50
temperature 3.8

A cubic initial array is used, so that the system contains N,, = 216 molecules.
The value of At is an order of magnitude smaller than that used in the soft-sphere
work; this is a result of the higher temperature (in MD units) and the need to allow
for the rotational motion of molecules with a small moment of inertia and hence a
relatively high angular velocity. Constant-temperature MD is used; with the value
of At shown, the temperature drift over 1000 timesteps amounts to about 4%, but
if this presents a problem the drift can be reduced by an order of magnitude simply
by halving At.
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Fig. 8.2. Site—site radial distribution functions for TIP4P water: goo (solid curve), gon
(short dashes) and gyy (long dashes).

Averaged® goo, gou and gyy measurements are shown in Figure 8.2. The lat-
ter two curves are truncated at distances less than rangeRdf because the criterion
for limiting the distance between sites is applied to the molecular centers of mass
(exactly as in the force computation) and not to the sites themselves. Without go-
ing into detail, the results are consistent with the expected tetrahedral, or icelike,
structural correlations known to occur in liquid water [jor83]. One example of a
measurement demonstrating the loose packed molecular organization of the fluid
is the integral of the function 477r2go0 () out to a distance that includes the first
peak of goo; this provides an estimate of the number of molecules that can be
regarded as nearest neighbors, and here the value is found to be 4.7.

Rotational diffusion

Rotational diffusion, a measure of the rate at which the direction of the molec-
ular dipole changes, is another quantity of experimental significance. The dipole
direction appears as the bottom row of the rotation matrix (8.2.9) and is the unit

vector
q193 + 4294
r=2| q2q3 — q194 (8.4.1)
G +a;— 3

& pr_anrdf
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Rotational diffusion — the mean-square rate of change in orientation — is expressed
in terms of the time-dependent dipole autocorrelation function

C(t) = (mi () - i (0)) (8.4.2)

Translational diffusion will also be measured, based on the molecular center of
mass coordinates.

The measurement® is organized in the same way as translational diffusion, with
extra elements in TBuf,

VecR *orgD;
real *ddDiffuse;

and additions to EvalDiffusion (§5.3),

VecR e;

for (nb = 0; nb < nBuffDiffuse; nb ++) {
if (tBuf[nb].count == 0) {
DO_MOL { s

e.x = 2. * (mol[n].q.ul * mol[n].q.u3 +
mol[n].q.u2 * mol[n].q.u4);
e.y = 2. * (mol[n].q.u2 * mol[n].q.u3 -
mol[n].q.ul * mol[n].q.u4); 10
e.z = 2. * (Sqr (mol[n].q.u3) + Sqr (mol[n].q.u4) - 0.5);
tBuf [nb] .orgD[n] = e;
}
}
if (tBuf[nb].count >= 0) { Is

tBuf [nb] .ddDiffuse[ni] = 0.;
DpO_MOL {
e.x = ... (as above) ...

tBuf [nb] .ddDiffuse[ni] += VDot (tBuf[nb].orgD[n], e);
}
}

}... }

Additions to AccumDiffusion, in the appropriate places, are

for (j = 0; j < nValDiffuse; j ++)
ddDiffuseAv[j] += tBuf[nb].ddDiffuse[j];

& pr_08_2
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fac = 1. / (nMol * limitDiffuseAv);
for (j = 0; j < nValDiffuse; j ++) ddDiffuseAv[j] *= fac; s

and to ZeroDiffusion,

for (j = 0; j < nValDiffuse; j ++) ddDiffuseAv[j] = 0.;
J J J J

In PrintDiffusion, the values of ddDiffuseAv must be included in the output.
Array declaration and allocation (A11ocArrays) requires

real *ddDiffuseAv;

AllocMem (ddDiffuseAv, nValDiffuse, real);

for (nb = 0; nb < nBuffDiffuse; nb ++) {
AllocMem (tBuf[nb].ddDiffuse, nValDiffuse, real); 5
AllocMem (tBuf [nb].orgD, nMol, VecR);

}

The runs used for these measurements are similar to the one described above,
but the system size is reduced to N,, = 125 and the following additional input data
are required,

limitDiffuseAv 10

nBuffDiffuse 20
nValDiffuse 200
stepDiffuse 40

The translational diffusion coefficients and the dipole autocorrelations, at T = 3.8
and 4.4, are shown in Figure 8.3. The runs of 57 600 timesteps used to produce
these results allow averaging over nine sets of data, after skipping the first three.

Hydrogen bonds

The molecular structure of normal ice involves a diamond (or tetrahedral) lattice;
short-range correlations reminiscent of this order persist into the liquid state. The
forces responsible for this loosely packed arrangement are attributed to hydrogen-
bonding, in which each molecule forms four strong, highly directional bonds with
its immediate neighbors. One of the basic requirements of any water model is that
it should reproduce this behavior. What exactly constitutes a hydrogen bond is not
included in the definition of the molecule, since it is a feature whose origin is
quantum mechanical, but, for modeling purposes, it is reasonable to assume that
the presence of such a bond between two molecules is marked by an interaction
energy lying in a particular range, and a molecular alignment that satisfies certain
conditions insofar as the distance and angles are concerned. Once all the hydrogen
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Fig. 8.3. Water diffusion coefficients and dipole autocorrelation functions at temperatures
3.8 (solid curves) and 4.4 (dashed curves).

bonds have been identified, it is possible to study the properties of the network
formed by the bonds [rah73, gei79].

Here we will focus on the pair-energy distribution [jor83], to see whether there
is anything special about its form to warrant using it in determining where hydro-
gen bonds have formed. Since this exercise® turns out to be successful, we then
make use of what has been learned to count the numbers of bonds formed by each
molecule.

The first step is to separately evaluate the interaction energy of each pair of
molecules and construct a histogram of these values. In addition, each pair whose
energy lies below a certain threshold is regarded as linked by a hydrogen bond, and
bond counts associated with these molecules are incremented. The threshold is de-
termined by a parameter boundPairEng. The following alterations and additions
to ComputeSiteForces are required, where nBond is added to the Mol structure
for use in the counting task.

real uSumPair;
int j;

DO_MOL mol[n].nBond = 0;
uSum = O.; 5
for (m1 = 0; m1 < nMol - 1; ml ++) {

for (m2 = m1 + 1; m2 < nMol; m2 ++) {

& pr_08_3



8.4 Measurements ) i

if (rr < rrCut) {
uSumPair = 0. ; 10

for (j1 = 0; j1 < sitesMol; j1 ++) {
for (j2 = 0; j2 < sitesMol; j2 ++) {
typeSum = ...
if (mSitel[j1].typeF == mSite[j2].typeF || typeSum == 5) { s

uSumPair += uVal;
}
}
} 20
uSum += uSumPair;
j = sizeHistPairEng * (uSumPair - minPairEng) /
(maxPairEng - minPairEng);
++ histPairEng([Clamp (j, O, sizeHistPairEng - 1)];
if (uSumPair < boundPairEng) { 25
++ mol[m1].nBond;
++ mol [m2] .nBond;
}
}
} 30
}
DO_MOL ++ histBondNum[Min (mol[n].nBond, sizeHistBondNum - 1)];
++ countPairEng;

Here, C1lamp (§18.2) ensures that the array index is in the permitted range.
The data collected are processed by a function called from SingleStep,

if (countPairEng == limitPairEng) PrintPairEng (stdout);

which computes the average pair-energy distribution over a series of configura-
tions, constructs a histogram of the number of bonds per molecule and outputs the
results.

void PrintPairEng (FILE *fp)

{
real eVal, hSum;
int n;
5
hSum = O0.;
for (n = 0; n < sizeHistPairEng; n ++) hSum += histPairEng([n];
for (n = 0; n < sizeHistPairEng; n ++) histPairEng[n] /= hSum;
hSum = 0.;
for (n = 0; n < sizeHistBondNum; n ++) hSum += histBondNum[n]; 10

for (n = 0; n < sizeHistBondNum; n ++) histBondNum[n] /= hSum;
fprintf (fp, "pair energy\n");
for (n = 0; n < sizeHistPairEng; n ++) {



230 8 Rigid molecules I
eVal = minPairEng + (n + 0.5) * (maxPairEng - minPairEng) /
sizeHistPairEng; 15
fprintf (fp, "7/8.4f J8.4f\n", eVal, histPairEng[n]);
}

fprintf (fp, "bond count\n");

for (n = 0; n < sizeHistBondNum; n ++)
fprintf (fp, "%d %8.4f\n", n, histBondNum[n]); 20

InitPairEng ();

}

Initialization is carried out by the function (called from SetupJob)

void InitPairEng ()

{

int n;

for (n
for (n

= 0; n < sizeHistPairEng; n ++) histPairEng[n] = 0.; 5
0; n < sizeHistBondNum; n ++) histBondNum[n]

]
o

countPairEng = 0;

}

The new variables used here are

real *histBondNum, *histPairEng, boundPairEng, maxPairEng, minPairEng;
int countPairkEng, limitPairEng, sizeHistBondNum, sizeHistPairEng;

additional data to be input are

NameR
NameI
NameR
NameR
NameI
NameI

(boundPairEng),

(limitPairEng),

(maxPairEng),

(minPairEng),

(sizeHistBondNum) , 5
(sizeHistPairEng),

and the array allocations (A1locArrays)

AllocMem (histBondNum, sizeHistBondNum, real);
AllocMem (histPairEng, sizeHistPairEng, real);

To investigate the pair-energy distribution we carry out a run with input data

boundPairEng -8.
deltaT 0.0003
density 0.98
initUcell 6 6 6

limitPairEng 1000
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Fig. 8.4. Pair-energy distribution.
maxPairEng 20.
minPairEng -40.
rCut 2.38

sizeHistBondNum 8
sizeHistPairEng 60
stepAdjustTemp 1000

stepAvg 200
stepEquil 0

stepLimit 5000
temperature 3.8

The value of At has been reduced to improve stability. The results shown in
Figure 8.4 are obtained by averaging over 1000 timesteps, after skipping the first
4000; the smaller peak corresponds to tightly bound, nearest neighbor molecule
pairs.

If we now assume that all pairs of molecules with mutual interaction energy be-
low a certain threshold e;, are hydrogen-bonded, we can actually examine the dis-
tribution of hydrogen bonds. By way of example, we use values of boundPairEng
(corresponding to e;,) of —8, —10 and —12 to obtain the results shown in Figure 8.5.
Although a more detailed analysis taking the relative orientation of the molecules
into account is required to ensure a consistent picture, the fact that for physically
reasonable values of e;, (e, =—10 corresponds to 1.55 kcal/mole) the average num-
ber of hydrogen bonds formed by each molecule is close to four is encouraging.
Further analysis appears in [jor83].
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Fig. 8.5. Distribution of mean number of hydrogen bonds per molecule for threshold
energy e; = —8 (squares), —10 (triangles) and —12 (diamonds).

8.5 Rotation matrix representation

Equations of motion

Although the quaternion representation has achieved popularity, there is an alterna-
tive method that considers the rotation matrices of the molecules directly [dul97],
and in doing so avoids the need for the supplementary normalization calculations
required by the quaternions. Furthermore, this approach can be incorporated into
a leapfrog integration scheme and does not require a PC integrator. The extra stor-
age needed by the matrix components (nine elements instead of four) is more than
compensated for by the reduced quantity of data retained from earlier timesteps.
Another potential benefit, although this depends on the relative magnitudes of the
rotational and translational velocities (which, in turn, depends on the moment of
inertia of the molecules), is the ability to use a larger integration timestep than al-
lowed by the PC method, while maintaining a high degree of energy conservation.

Two ways of formulating the problem are described here. One approach involves
expressing the angular velocity and acceleration vectors — ; and & — in the coor-
dinate frame fixed to the principal axes of the molecule. Let R; denote the rotation
matrix of molecule 7; the transpose R/ would be used, as before, in converting the
site coordinates of the molecule to their values in the space-fixed frame. The first
stage of the leapfrog integration consists of a half-timestep update of the angular
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velocities,
h
W (1 +h/2) = wi(t) + Ea;(t) (8.5.1)

together with a full update of the rotation matrix, expressed in terms of a symmetric
product of matrices each describing a small partial rotation about a different axis,

R;(t +h)=R;(?) U{ U{ Ué" Ué" U{ (8.5.2)
where the matrices
U, = Ux(a),’-xh/2), U, = Uy(w,’-yh/2), Us = Uz(a)lfzh) (8.5.3)

correspond to the rotations around the different axes. Writing the product of the
noncommuting rotation matrices in this symmetric form is necessary to ensure the
time-reversible nature of the numerical integration.

Next, express the updated angular velocity in the newly rotated frame of the
molecule that results from applying these small partial rotations,

The translational part of the first stage of the leapfrog integration is also carried out
at this point, and the force and torque computations performed as before. Since the
torque 7; on the molecule is evaluated in the space-fixed frame,

«(t+h) = () R +h) @ +h (8.5.5)

where Z; is the diagonal moment of inertia matrix in the principal-axes frame of
the body. Finally, in the second stage of the leapfrog process, the rotational part
consists of

W/t +h) =&t +h/2) + goclf(t +h) (8.5.6)

The alternative is to work entirely in the space-fixed frame'. The first stage of
the leapfrog integration is then

w(t+h/2)=w()+ gai () (8.5.7)
and, since it is more convenient to work with the transpose of R;,

R/ (t+h)=U,U,UsU, U, R (t) (8.5.8)
where the rotation matrices of (8.5.3) are replaced by

Ui =U(wich/2), U, =Uywiyh/2), Us=U.(w;:h) (8.5.9)

F This version is required for dealing with molecules having limited internal degrees of freedom (Chapter 11).

¥
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which are evaluated in the space-fixed frame. The required angular acceleration is
now

a(t+h) =Rt +h) () R+ h)wi(t +h) (8.5.10)

and the second stage of the leapfrog integration is

w,-(l—i—h)=wi(t+h/2)+goz,-(t+h) (8.5.11)

The trigonometric functions appearing in the rotation matrices can be approxi-
mated to second order in /4, but this must be done in a manner that preserves the
orthogonality of the matrices, for example,

1 0 0
10 0 1—62/4 —6
U,@)=|0 cosf® —sinb | =~ 14+60%/4 146%/4 (8.5.12)
0 sind cosd 0 0 1—6%/4

1+6%/4 1+6%/4

Integration

The variables associated with each molecule are contained in the structure

typedef struct {
VecR r, rv, ra;
VecR wv, wa;
RMat rMatT;
} Mol; 5

that differs from the Mol structure used in §8.2. Here, the quaternion components,
and their first and second derivatives, have been replaced by a rotation matrix (ac-
tually its transpose) rMatT, together with the angular velocity and acceleration
(expressed in the space-fixed frame); acceleration values from earlier timesteps are
no longer required.

Since the matrix U; = U,(w;.h) that appears in (8.5.8) can be replaced by
U.(w;.h/2) U,(w; .h/2), evaluating the product of the partial rotation matrices can
be carried out by explicitly constructing a pair of matrix products that together
make up (8.5.8), namely,

Ui(wich/2) Uy(w; yh/2) U.(w;-h/2) (8.5.13)

and the product terms in reversed order (the terms of the two products share com-
mon elements), and then multiplying the results. This is accomplished by the fol-
lowing function, in which the first argument points to the matrix and the second to
the vector hw/2.
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void BuildStepRmatT (RMat *mp, VecR *a)

{

RMat m1, m2;
real c[3], s[3], ak, c0Oc2, c0s2, s0c2, s0s2, t;
int k;

for (k = 0; k < 3; k ++) {

}

s[k]

c0c2 =
c0s2 =
s0c2 =
s0s2 =

m1
ml
ml
ml
ml
m1
ml
ml
ml

m2

m2

.u[0]
.ul1]
.ul2]
.u[3]
.ul4]
.u[5]
.ul6]
.ul7]
.u[8]
m2.
m2.
m2.
.ul3]
m2.
m2.
m2.
m2.
.u[8]

u[0]
ul1]
ul2]

ul4]
ul5]
ul6]
ul7]

ak = VComp (*a, k);
t = 0.25 * Sqr (ak);
clk]

= (1. -t) / (1. +t);

cl[o] *
clo] * s[2];
s[0] *

ak / (1. + t);
cl2];

cl2];

s[0] * s[2];

cl1] * c[2];
s0c2 * s[1] +
- ¢c0c2 * s[1]
- cl[1] * s[2];
- s0s2 * s[1]
c0s2 * s[1] +
s[1];

- s[0] * c[1];
clo] * c[1];
ml.ul0];

- ml.u[3];

- ml.ul6];
s0c2 * s[1] -
s0s2 * s[1] +
-ml.ul7];
c0c2 * s[1] +
c0s2 * s[1] -
ml.u[8];

MulMat (mp->u, ml.u, m2.

}

c0s2;
+ s0s2;

+ c0c2;
s0c2;

c0s2;
c0c2;

s0s2;
s0c2;

u, 3);

10

20

25

30

The function MulMat (§18.4) is used for multiplying matrices.

The leapfrog integration function is an extension of earlier versions; the addi-
tional computation (8.5.8) required for the rotation matrices makes use of the func-
tions BuildStepRmatT and MulMat.

void LeapfrogStep (int part)

{

RMat mc, mt;
VecR t;
int n;

if (part == 1) {
DO_MOL {
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VVSAdd (mol[n].wv, 0.5 * deltaT, moll[n].wa);

VVSAdd (mol[n].rv, 0.5 * deltaT, mol[n].ra); 10
}
DO_MOL {
VSCopy (t, 0.5 * deltaT, mol[n].wv);
BuildStepRmatT (&mc, &t);
MulMat (mt.u, mc.u, mol[n].rMatT.u, 3); 15
mol[n].rMatT = mt;
}
DO_MOL VVSAdd (mol[n].r, deltaT, mol[n].rv);
} else {
DO_MOL { 20
VVSAdd (mol[n].wv, 0.5 * deltaT, mol[n].wa);
VVSAdd (mol[n].rv, 0.5 * deltaT, moll[n].ra);
}
}
} 25

Interaction calculations

Instead of revisiting the water model considered previously, the case study used to
demonstrate the rotation matrix approach (the method also appears in Chapter 11)
deals with a fluid of rigid molecules constructed from tetrahedral assemblies of soft
spheres®. The simulations differ from the water study in a number of respects. The
moment of inertia components of the water molecule are quite small, resulting in
an integration timestep that is limited by the relatively high angular velocity; those
of the tetrahedral molecule are considerably larger, leading to similar contributions
to the site velocities from the translational and angular velocities, so that a larger
timestep can be used. The interactions here are short ranged, so the force calcula-
tions can utilize neighbor lists rather than the all-pair approach used earlier. One
additional new feature is the introduction of hard, reflecting container walls, as an
alternative to the periodic boundaries used in most other case studies.

The neighbor list should only include pairs of interaction sites belonging to dis-
tinct molecules; the function BuildNebrList in §3.4 must therefore be modified
by replacing the quantity nMol with nSite, and references to coordinates mo1[] .r
are replaced by site[] . r. The test that ensures each pair of sites is examined only
once must be augmented with a check that the sites involved belong to different
molecules,

if ((m1 !'=m2 || j2 < j1) && j1 / sitesMol != j2 / sitesMol)

The change resulting from the replacement of periodic boundaries by hard walls

& pr_08_4,pr_08_5
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involves ensuring that the second member of the cell pair lies within the region;
this is accomplished by inserting

if (m2v.x < 0 || m2v.x >= cells.x ||
m2v.y < 0 || m2v.y >= cells.y || m2v.z >= cells.z) continue;

prior to the innermost pair of loops over cell contents and removing all references
to periodic wraparound.

The function for evaluating site forces, ComputeSiteForces, is derived from
the function ComputeForces used for the simplest soft-sphere case, in which the
interaction site forces site[].f are evaluated for those pairs in the neighbor list
that lie within interaction range; site coordinates site[] . r are used and the refer-
ence to periodic wraparound removed. The site coordinates themselves are gener-
ated from the available rotation matrices, so the function GenSiteCoords (§8.2)
now contains the replacement line

MVMul (t, mol[n].rMatT.u, mSitel[j].r);

and the code for generating the rotation matrices is omitted.

Wall interactions

When any of the molecular interaction sites approach a container wall they are sub-
jected to a repulsive force in the direction perpendicular to the wall. The interaction
is based on the soft-sphere potential, but only the distance component normal to the
wall enters the calculation. Each wall contributes independently, so that a site near
a container edge or corner can experience the sum of two or three separate wall in-
teractions. While an extension to the neighbor-list procedure could have been used
to select the sites affected, here we simply examine all sites, although the amount
of work is reduced by first testing whether the center of mass of the molecule is
sufficiently close to the wall for such interactions to be possible.
A pair of definitions are introduced for convenience,

#define NearWall(t) \
fabs (fabs (mol[n].r.t) - 0.5 * region.t) < \
farSiteDist + 0.5 * rCut

#define WallForce(t)
{ dr = ((sitel[jl.r.t >= 0.) 7 site[j].r.t :
- site[j].r.t) - 0.5 * (region.t + rCut);
if (dr > - rCut) {
if (site[jl.r.t < 0.) dr = - dr;
rri = 1. / Sqr (dr);

- - - -

10
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rri3 = Cube (rri); \

site[j].f.t += 48. * rri3 * (rri3 - 0.5) * rri * dr; \

uSum += 4. * rri3 * (rri3 - 1.) + 1.; \

} \
} 15

where farSiteDist is the distance of the furthest site in the molecule from its
center of mass. The function that evaluates wall forces is then simply

void ComputeWallForces ()
{
real dr, rri, rri3;
int j, n;

Dpo_MoL {
if (NearWall (x)) {
for (j = n * sitesMol; j < (n + 1) * sitesMol; j ++)
WallForce (x);

(ditto for y and z components) ...

The wall forces ensure that the molecules remain within the container. Their in-
troduction here is just for demonstration purposes; under normal circumstances
periodic boundaries are preferable to hard walls (since the effect of walls on the
behavior can extend a considerable distance into the bulk).

Other details

Once the total force acting on each of the sites has been determined the forces and
torques acting on the molecules — the latter expressed in the space-fixed frame —
can be evaluated by a suitably modified version of ComputeTorgs,

void ComputeTorgs ()

{
VecR dr, t, torqS, waB;
int j, n;

DO_MOL {

VZero (mol[n].ra);

VZero (torgS);

for (j = 0; j < sitesMol; j ++) {
VVAdd (mol[n].ra, site[n * sitesMol + j].f); 10
VSub (dr, site[n * sitesMol + jl.r, mol[n].r);
VCross (t, dr, site[n * sitesMol + j].f);
VVAdd (torgS, t);
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}
MVMulT (waB, mol[n].rMatT.u, torgS); 15
VDiv (waB, waB, mInert);
MVMul (mol[n].wa, mol[n].rMatT.u, waB);
}
F

where MVMulT corresponds to MVMul with a transposed matrix.
The initialization procedure is

void SetupJob ()
{
AllocArrays ();
DefineMol ();
stepCount = 0; s
InitCoordsWalls (farSiteDist);
InitVels ();
InitAccels ();
InitAngCoords ();
InitAngVels (); 10
InitAngAccels ();
AccumProps (0);
nebrNow = 1;

}

in which Al1locArrays includes allocation of the arrays needed for both the rigid-
body simulation and the neighbor-list method, and SingleStep includes

LeapfrogStep (1);
GenSiteCoords ();
if (nebrNow) {
nebrNow = 0;
dispHi = 0.; 5
BuildNebrList ();
}
ComputeSiteForces ();
ComputeWallForces ();
ComputeTorgs (); 10
LeapfrogStep (2);

The characteristics of the tetrahedral molecules considered here, namely their
site coordinates and moments of inertia, are specified in the following function,
with the parameter siteSep allowing for an adjustable molecule size. To allow
generalization” the center of mass position rCm is computed from the site positions;
here, the same mass value is associated with each site of the tetrahedron and the

1 Linear molecules are allowed, provided a nonzero moment of inertia is associated with the longitudinal axis.
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molecules have unit total mass.

void DefineMol ()
{

VecR rCm;

int j;

VSet (mSite[0].r, 0., 0.5 / sqrt (3.), sqrt (2.) / sqrt (3.));
VSet (mSite[1].r, 0., 1.5 / sqrt (3.), 0.);
VSet (mSite[2].r, 0. 5 0., 0.);
VSet (mSite[3].r, - 0.5, O 0.);
for (j = 0; j < sitesMol; j ++) VScale (mSitel[jl.r, siteSep); 10
VZero (rCm);
for (j = 0; j < sitesMol; j ++) VVAdd (xCm, mSite[j].r);
for (j = 0; j < sitesMol; j ++)
VVSAdd (mSite[j].r, -1. / sitesMol, rCm);

VZero (mInert); Is
for (j = 0; j < sitesMol; j ++) {

mInert.x += Sqr (mSite[j].r.y) + Sqr (mSitel[j].r.z);

mInert.y += Sqr (mSitel[j].r.z) + Sqr (mSitel[j]l.r.x);

mInert.z += Sqr (mSitel[j].r.x) + Sqr (mSitel[j].r.y);
} 20
VScale (mInert, 1. / sitesMol);

Generating the initial state uses a function based on InitCoords that ensures
molecules are not placed too close to the walls,

void InitCoordsWalls (real border)

{

VecR ... regionI;

VAddCon (regionI, region, - 2. * border); 5

where VAddCon (§18.2) adds the same value to each of the vector components,
and the reduced region size regionI is used instead of region for initializing the
coordinates. The value of border is set equal to farSiteDist to ensure that all
sites lie within the container. Function SetParams sets various quantities, includ-
ing farSiteDist,

siteSep = 0.8;

farSiteDist = siteSep / (2. * sqrt (2./3.));

sitesMol = 4;

nSite = nMol * sitesMol;

nebrTabMax = nebrTabFac * nSite; 5
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and the required new variables are

real farSiteDist, siteSep;
int nSite;

For the initial angular coordinates, now expressed in terms of the rotation matrices,
a minor change to the function InitAngCoords is required,

Quat qe;

BuildRotMatrix (&mol[n].rMatT, &qe, 1);

while angular velocities are set using

void InitAngVels ()
{
VecR e, wvB;
real f;
int n; s

DO_MOL {
VRand (&e);
f = velMag / sqrt (VWLenSq (mInert, e));
VSCopy (wvB, f, e); 10
MVMul (mol[n].wv, mol[n].rMatT.u, wvB);
}
F

and the angular accelerations are initialized to zero by InitAngAccels.

Computation of the energy, together with a fairly generous estimate of the max-
imum site displacement that is used in deciding when to rebuild the neighbor list,
is carried out as follows.

void EvalProps ()
{
VecR wvB;
real vv, vvMax, vvrMax, vvwMax;
int n; s

VZero (vSum);

vvSum = 0.;

vvrMax = 0. ;

vvwMax = 0.;

Dpo_MOL {
VVAdd (vSum, mol[n].rv);
vv = VLenSq (mol[n].rv);
vvSum += vv;
vvrMax = Max (vvrMax, vv); 15

10
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MVMulT (wvB, mol[n].rMatT.u, mol[n].wv);

vvSum += VWLenSq (mInert, wvB);

vv = VLenSq (wvB);

vvwMax = Max (vvwMax, vv);
} 20
vvMax = Sqr (sqrt (vvrMax) + farSiteDist * sqrt (vvwMax));

In order to use the constant-temperature constraint together with rotation matri-
ces and leapfrog integration, the following form of the thermostat function — based
on the method in §6.3 — is required.

void ApplyThermostat ()

{

RMat mc, mt;

VecR vt, waB, wvB;

real sl1, s2, vFac; 5
int n;

s1 = 0.;
s2 = 0.;
DO_MOL { 10
VSAdd (vt, mol[n].rv, 0.5 * deltaT, mol[n].ra);
sl += VDot (vt, mol[n].ra);
s2 += VLenSq (vt);
VSAdd (vt, mol[n].wv, 0.5 * deltaT, mol[n].wa);
MVMulT (wvB, mol[n].rMatT.u, vt); 15
MVMulT (waB, mol[n].rMatT.u, mol[n].wa);
s1 += VWDot (mInert, wvB, waB);
s2 += VWLenSq (mInert, wvB);
}
vFac = - s1 / s82; 20
DO_MOL {
VSAdd (vt, mol[n].rv, 0.5 * deltaT, moll[n].ra);
VVSAdd (mol[n].ra, vFac, vt);
VSAdd (vt, mol[n].wv, 0.5 * deltaT, mol[n].wa);
VVSAdd (mol[n].wa, vFac, vt); 25

Finally, when adjusting the temperature, the contribution from the rotational mo-
tion must also be rescaled, so the relevant code in AdjustTemp is changed to

VecR wvB;

vvSum = 0.;
Dpo_MOL {
MVMulT (wvB, mol[n].rMatT.u, mol[n].wv); s
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Table 8.1. Energy measurements for fluid of tetrahedral molecules.

timestep (E) o(E) (Ex) o(Eg)

1000 3.3961 0.0004 2.9858 0.0283
2000 3.3969 0.0002 29717 0.0298
3000 3.3970 0.0002 2.9820 0.0270
4000 3.3970 0.0002 2.9883 0.0284
5000 3.3970 0.0002 2.9722 0.0234
10000 3.3974 0.0002 2.9773 0.0268

vvSum += VWLenSq (mInert, wvB);
}
vFac = velMag / sqrt (vvSum / nMol);
DO_MOL VScale (mol[n].wv, vFac);

Measurements

The measurements shown here focus on how well the rotation matrix approach suc-
ceeds in conserving energy. During the initial equilibration period the temperature
is reset to the desired value every 100 timesteps, but then the system is allowed to
run without any further adjustment. The run includes the following data and the
results are shown in Table 8.1. The energy conservation in this case is of similar
quality to the soft-sphere fluid of §3.7.

deltaT 0.005
density 0.15
initUcell 8 88
stepAvg 200
stepEquil 1000
stepLimit 10000
temperature 1.

8.6 Further study

8.1  Explore the relation between quaternions and other representations of ori-
entation [gol80].

8.2  The leapfrog method can also be used with quaternions [fin93]; examine its
effectiveness.

8.3 Study the relative orientation of neighboring water molecules.

8.4  Study the nature of the hydrogen-bond network formed and the bond life-
times [gei79].
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Compute the dielectric constant [spr91, smi94]; how sensitive is this to the
choice of model and how significant is the effect of truncating the long-range
Coulomb forces?

Because of the unusual properties of water, various models have been used
in MD studies to account for the experimental observations; investigate the
factors contributing to the design of different models.

The rigid molecule used for water ignores important polarizability effects;
how can the model be extended [spr88] to incorporate such behavior?
Constant-pressure techniques can also be applied to rigid bodies; investigate
[nos&3].

A subtle, but important, property of water is the density maximum that oc-
curs while still in the liquid state (the reason why ice floats); how successful
has MD been in studying this phenomenon [bil94]?

Compare the efficiency of the quaternion and rotation matrix methods as
applied to water.

Study other examples of rigid molecular models — both linear and nonlinear —
for real fluids [lev92].

¥
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Flexible molecules

9.1 Introduction

The rigid molecule approach described in Chapter 8 is limited in its applicabil-
ity, because it is really only appropriate for small, compact molecules. Here we
consider the opposite extreme, namely, completely flexible molecules of a type
used in certain kinds of polymer studies. No new principles are involved, since the
intramolecular forces that maintain structural integrity by holding the molecule to-
gether, as well as providing any other necessary internal interactions, are treated
in the same way as intermolecular forces. Later, in Chapters 10 and 11, we will
consider more complex models, in which molecules exhibit a certain amount of
flexibility but are also subject to various structural constraints that restrict the in-
ternal motion. The first case study in this chapter deals with the configurational
properties of a single chain molecule in solution. The second deals with a model
of a surfactant in solution, in which very short, interacting chain molecules are
just one of the components of a three-component fluid; this very simple system
is capable of producing coherent structures on length scales greatly exceeding the
molecular size, as the results will demonstrate.

9.2 Description of molecule

Polymer chains

Owing to the central role played by polymers in a variety of fields, biochemistry
and materials science are just two examples, model polymer systems have been the
subject of extensive study, both by MD and by other methods such as Monte Carlo
[bin95]. Of the many kinds of polymer topology that occur, chains have received
the most attention, but other types, including stars [gre94] and membranes [abr89],
have not been neglected. Chain properties can be divided into two categories, equi-
librium and dynamical; much of the equilibrium behavior — especially in the case
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of long chains — actually falls under the heading of critical phenomena, and here
MD is unable to compete with lattice-based methods because of their far less de-
manding nature, but when it comes to transport phenomena MD is, once again, the
only viable method.

Polymer chain models can be studied for different reasons. At one extreme is
the attempt to reproduce the behavior of a real polymer, an example being the
alkane model we will meet in Chapter 10, or complex biopolymers such as proteins
[ber86a, bro88, bro90a, dua98]. Here we concentrate on a much simpler model
that aims at capturing some of the more general aspects of chain behavior, rather
than all the myriad quantitative details. One can regard this model as analogous to
the soft-sphere fluid, but while for simple fluids there is just one basic model, for
polymers there are a number of different systems that might be regarded as basic.
The simplest is a single chain in the vacuum, used for studying the configurational
properties of an isolated polymer. This is followed by a chain in an inert soft-sphere
solvent, the purpose of the solvent being to introduce a certain amount of hydro-
dynamic coupling into the motion of the chain [pie92, smi92, dun93]. Then there
are multiple-chain fluids [kre92]; here the chain density is an important parameter,
because it determines how much of the dynamics is due to the chain interacting
with itself and how much is due to interactions between chains. In each instance,
the details of the interactions between chain atoms, as well as the nature of the
solvent, if present, must be addressed.

A problem that must be faced when studying polymers is the range of timescales
over which configurational change occurs. At one extreme are the localized changes
in internal arrangement that involve only short segments of the chain; at the other
are large-scale conformational changes and chain diffusion, processes that are seri-
ously impeded by effects such as mutual obstruction and entanglement. This means
that some of the more interesting rheological properties of polymer liquids, and the
challenging problems of protein folding, appear to be beyond the limits of what can
be simulated by MD. But a great deal can still be done within the timescales that
are currently accessible.

Chain structure

The goal of the simplest models is to represent the excluded volume of the indi-
vidual monomers out of which the polymer is constructed and the bonds that link
them into chains. The monomers can be simple atoms modeled using a soft-sphere
potential, while bonds with limited length variation can be produced by means of
an attractive interaction between chain neighbors. Single or multiple chains can
be included and a soft-sphere solvent is readily added. Chains constructed in this
way are totally flexible, within the limits set by the repulsive potential; a controlled
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degree of stiffness can be introduced by means of an interaction regulating the sep-
aration of next-nearest neighbors, although we will not do this here. More specific
structural requirements are best addressed using the methods described in subse-
quent chapters.

In the model treated here, all pairs of atoms interact via the familiar soft-sphere
repulsive force, which we will call f;,; in addition, there is an attractive interaction
between each pair of adjacent bonded atoms of form

Jon(r) =

({”((1 — P /1)) Fm —Te <T <Tp (9.2.1)

otherwise

In (9.2.1), the direction of the soft-sphere force has been reversed, and its origin
shifted to produce a force that limits the separation of bonded atoms; in practice,
the bond-length variation can be restricted to a (not too) narrow range by a suitable
choice of r,, (> r.). The energy and length scales characterizing the potential, €
and o, are left unchanged.

9.3 Implementation details

Interactions

The evaluation® of the forces between nonbonded atoms belonging to the same
chain, as well as between atoms in different chains and between solvent—chain and
solvent—solvent atom pairs, are all handled by the soft-sphere functions of §3.4,
with just one minor alteration. If we assume that neighbor lists are used, the change
affects the condition for selecting atom pairs in BuildNebrList. The modified
form is

if ((m1 !'=m2 || j2 < j1) && (mol[ji].inChain == -1 ||
mol[j1].inChain != mol[j2].inChain [[| abs (j1 - j2) > 1))

so that bonded atom pairs are excluded — they will be treated separately. The el-
ement inChain that has been added to the Mol structure indicates whether the
particular atom belongs to a polymer chain, and if so — denoted by a value > 0 —
the identity of the chain.

An additional function is required for evaluating the forces between bonded
atoms. The total number of chains is given by nChain, the number of atoms per

o pr_09_1
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chain — assuming all chains to have the same length — by chainLen, and r,, is
represented by the variable bondLim.

void ComputeChainBondForces ()

{
VecR dr;
real fcVal, rr, rrCut, rri, rri3, uVal, w;
int i, j1, j2, n; 5
rrCut = Sqr (rCut);
for (n = 0; n < nChain; n ++) {
for (i = 0; i < chainlen - 1; i ++) {
j1 = n * chainlLen + ij; 10
j2 = j1 + 1;
VSub (dr, mol[j1].r, mol[j2].r);
VWrapAll (dr);
rr = VLenSq (dr);
if (rr < rrCut) { Is
(same as ComputeForces) ...
}
w = 1. - bondLim / sqrt (zr);
if (w > 0.) ErrExit (ERR_BOND_SNAPPED);
rr *= Sqr (w); 20
if (rr < rrCut) {
rri = 1. / rr;
rri3 = Cube (rri);
fcVal = 48. * w * rri3 * (rri3 - 0.5) * rri;
(same as ComputeForces) ... 25
}
}
}
}

In computing the attractive part of the bond interaction a safety check is included
to ensure that the bond has not ‘snapped’, either because of numerical error or due
to incorrectly formulated initial conditions (see below).

Initial state

When preparing the initial state it is essential that the atoms of each chain be po-
sitioned so that the bond lengths are all within their permitted ranges, and that no
significant overlap occurs between atoms belonging to either the same or different
chains. Neither of these issues presents any difficulty in this particular case study,
especially if the density is not too high, but questions of how to pack molecules cor-
rectly into a reasonably low energy state while avoiding overlap between molecules
can arise in other situations [mck92]. Solvent atoms pose less of a problem because
they can be added after the chains are in place.
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Possible initial chain states include fully stretched and planar zigzag configura-
tions; another option is the linear helix which is even more compact than the zigzag
form, a useful feature when chain packing becomes problematic at higher densi-
ties. The following function arranges the atoms of each chain in a zigzag state,
with the major axis of the chain aligned in the x direction. The chains themselves
are organized as a BCC lattice, and after they have been positioned the coordinates
are corrected to allow for any periodic wraparound. We also show how the solvent
is added; the very simple but inefficient approach demonstrated here attempts to
place solvent atoms at the sites of a simple cubic lattice by checking whether the
proposed location overlaps any of the chain atoms already in position, and if over-
lap is found to occur the tentative solvent atom is discarded (for large systems a
method based on the use of cells would be preferable).

void InitCoords ()
{
VecR c, dr, gap;
real by, bz;
int i, j, m, n, nx, ny, nz; s

by = rCut * cos (M_PI / 4.);
bz = rCut * sin (M_PI / 4.);
n = 0;
VDiv (gap, regiom, initUchain); 10
for (nz = 0; nz < initUchain.z; nz ++) {
for (ny = 0; ny < initUchain.y; ny ++) {
for (nx = 0; nx < initUchain.x; nx ++) {
VSet (c, nx + 0.25, ny + 0.25, nz + 0.25);
VMul (c, c, gap); 15
VVSAdd (c, -0.5, region);
for (j =0; j<2;j++) {
for (m = 0; m < chainLen; m ++) {
VSet (mol[n].r, 0., (m 7 2) * by, m * bz);

VVSAdd (mol[n].r, 0.5 * j, gap); 2
VVAdd (mol[n].r, c);
++ n;
}
}
} 25
}
}
nMol = n;
ApplyBoundaryCond ();
VDiv (gap, region, initUcell); 30

for (nz = 0; nz < initUcell.z; nz ++) {
for (ny = 0; ny < initUcell.y; ny ++) {
for (nx = 0; nx < initUcell.x; nx ++) {
VSet (¢, nx + 0.5, ny + 0.5, nz + 0.5);
VMul (c, c, gap); 35
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VVSAdd (c, -0.5, region);

for (i = 0; i < nChain * chainLen; i ++) {
VSub (dr, mol[i].r, c);
if (VLenSq (dr) < Sqr (rCut)) break;

} 40
if (i == nChain * chainLen) {
mol[n].r = c;
++ n;
F
} 45
}
}
nMol = n;

The variables introduced here are

VecI initUchain;
real bondLim;
int chainLen, nChain;

and there is additional input data

NameR (bondLim),
NameI (chainLen),
NameI (initUchain),

The number of chains, assuming the BCC arrangement, is computed in SetParams,

nChain = 2 * VProd (initUchain);
if (nChain == 2) nChain = 1;

where the values in initUchain (an integer vector) specify the number of unit
cells in the lattice used for arranging the chains. To enable the study of just a single
chain, we have assumed that if a single unit cell is specified the intention is to have
just one chain; to accommodate this case a change is needed in InitCoords,

if (nChain == 1) {
for (m = 0; m < chainLen; m ++) {
VSet (mol[n].r, 0., (m 7 2) * by, m * bz);
VVSAdd (mol[n].r, -0.25, region);
++ n; 5
}
} else {
(as before)

}
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The maximum possible number of atoms, subject to later reduction because of
overlap between solvent and chain atoms, is set in SetParams,

nMol = VProd (initUcell) + nChain * chainLen;

where initUcell now specifies the number of unit cells that contain solvent atoms
(ignoring overlap).

The final stage of the initialization process involves explicit assignment of atoms
to chains for use in the interaction calculations; since the chains are constructed
consecutively this is a trivial task.

void AssignToChain ()
{

int i, j, n;

n = 0; 5
for (i = 0; i < nChain; i ++) {
for (j = 0; j < chainlLen; j ++) {
mol[n].inChain = i;
++ n;
} 10
}

for (n = nChain * chainLen; n < nMol; n ++) mol[n].inChain = -1;

9.4 Properties

Chain conformation

Three spatial properties of polymer chains are frequently studied because of their
experimental relevance. The first is the mean-square end-to-end distance (R?) from
which it is possible to learn whether, on average, the chain is in an open or com-
pact configuration; the distribution of R? values, or at least the moments of the
distribution, can be used to determine the importance of effects such as excluded
volume. Then there is the mean-square radius of gyration (S2) that provides in-
formation on the entire mass distribution of the chain and plays a central role in
interpreting light scattering and viscosity measurements. Lastly, since the actual
mean spatial distribution of the chain mass — essentially its ‘shape’ — need not be
spherical, details of the moments of the mass (or monomer) distribution can be
informative.
For a chain of ny; monomers

(R*) =y, — r1I*) 9.4.1)

¥
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and, if all monomers have the same mass,

(8% = ni<ij|ri - f|2> (9.4.2)

i=1
where r is the center of mass. Elements of the tensor describing the mass distribu-
tion have the form

ng

1
Gy = — D i = F) iy — ) (9:4.3)

Si=1

The three eigenvalues of G are denoted by g;, g, and g3; their sum is just (S?),
but it is their ratios that are of interest because if they are not equal to unity it
means that the distribution is nonspherical’. Rearrangement of (9.4.3) leads to an
alternative expression that is used in the computations, namely,

Gy = nlsi:”ix"iy - %[Z rixi| [iriyi| 94.4)

i=1 Shki=1 i=1

The function shown below accumulates these chain properties over a sequence
of configurations; it is called from SingleStep by

if (stepCount >= stepEquil &&
(stepCount - stepEquil) J, stepChainProps == 0) EvalChainProps ();

New variables, input data items and the initialization of this calculation (each in
the appropriate place) are

real bbDistSq, bondLim, eeDistSq, gMomRatiol, gMomRatio2, radGyrSq;
int countChainProps, limitChainProps, stepChainProps;

NameI (limitChainProps),
NameI (stepChainProps), 5

countChainProps = 0;

The following function measures and averages the end-to-end distance, the ra-
dius of gyration, the eigenvalue ratios and the actual bond lengths. Evaluating the
eigenvalues {g;} requires diagonalizing a 3 x 3 matrix; to do this, simply expand
the determinant det|G — g1 | to obtain the cubic characteristic equation, so that {g;}
are just the solutions of this equation obtained by a call to SolveCubic (§18.4).
The organization of this function adheres to a pattern that should be familiar by

F The familiar inertia tensor [gol80] has components S 25 xy — Gxy.
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now; the output function is trivial.

i

void EvalChainProps ()

{

VecR c, cs,
real al[3], gl6], gVall3];
int i, j, k, n, ni;

dr, shift;

if (countChainProps == 0) {
bbDistSq =

eeDistSq

radGyrSq =
gMomRatiol
gMomRatio2

}

n = 0;

0.;

.

o o

0.
0.

for (i = 0; i < nChain; i ++) {
VZero (shift);
VZero (cs);
for (k = 0; k < 6; k ++) g[k] = 0.;

nl = n;

for (j = 0; j < chainLen; j ++) {

if (G>0) {
VSub (dr, mol[jl.r, mol[j - 1].r);

VShiftWrap (dr, x);
VShiftWrap (dr, y);
VShiftWrap (dr, z);
bbDistSq += VLenSq (dr);

}

VAdd (c, mol[n].r, shift);
VVAdd (cs, c);

+= Sqr
+= Sqr
+= Sqr

glol
gl1]
gl2]
gl3]
gl4]
gls]
++ n;

}

+=
+=
+=

c.X
c.z

c.y

(c.x);
(c.y);
(c.z);
* C.y;
* C.X;
* c.z;

VVSub (c, mol[ni].r);
eeDistSq += VLenSq (c);
VScale (cs, 1. / chainLen);

for (k = 0; k < 6; k ++) gl[k] /= chainlLen;

glo] -= Sqr (cs.x);
gl3] -= cs.x * cs.y;

(similarly for other elements)
alo] = - glo] - gl1] - gl2];

al1] = gl[o] = gl[1] + g[1] * gl[2] + g[2] * g[0] -
Sqr (gl[3]) - Sqr (gl[4]) - Sqr (g[51);

10

20

25

30

40

45

al2] = g[0] * Sqr (g[5]) + gl[1] * Sqr (g[4]) + gl[2] * Sqr (g[3]) -

2. * g[3] * gl[4] * g[5] - glo] * g[1] * gl[2];

b
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SolveCubic (g, a);
gVal[0] = Max3 (glo], gl1], gl2]);
gval[2] = Min3 (gl0], gl1]l, gl2]);
gVall1]l = gl[o] + gl1] + gl[2] - gVal[0] - gVall[2];
radGyrSq += gVal[0] + gVall[1] + gVall[2];
gMomRatiol += gVal[1] / gVall[O]; 55
gMomRatio2 += gVal[2] / gVall[0O];
}
++ countChainProps;
if (countChainProps == limitChainProps) {
bbDistSq /= nChain * (chainlen - 1) * limitChainProps; 60
eeDistSq /= nChain * limitChainProps;
(ditto for radGyrSq, gMomRatiol, gMomRatio2)
PrintChainProps (stdout);
countChainProps = 0;
} 65
}

50

Here, Min3 and Max3 (§18.2) extend Min and Max to three arguments, and

#define VShiftWrap(v, t)
if (v.t >= 0.5 * region.t) {
shift.t -= region.t;
v.t -= region.t;
} else if (v.t < -0.5 * region.t) {
shift.t += region.t;
v.t += region.t;

}

— - - - - —

Measurements

The results shown here are for a single chain in a soft-sphere solvent. We consider
chains consisting of n;, = 8, 16 and 24 monomers. The input data for a chain with
ng = 8 include

bondLim 2.1
chainLen 8
density 0.5
initUcell 10 10 10
initUchain 111

limitChainProps 100
stepAdjustTemp 1000

stepAvg 20000
stepChainProps 20
stepEquil 0
stepLimit 500000

temperature 2.
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Table 9.1. Chain measurements.

ny (I (R?)  o(R? (S2) (8% (g2/g1)  (g3/g1)

8 1.0531 13.08 0.61 2.105 0.050 0.2433 0.0780
16 1.0534 31.92 291 5.040 0.261 0.2700 0.0894
24 1.0533 59.07 10.30 9.015 0.937 0.2411 0.0751

Table 9.2. Block-averaged error estimates.

ng =38 ng =16 ng =24
b o((R*) o((S?)  o(RH) oS (R  o((SH)
1 0.245 0.021 1.016 0.091 2.149 0.185
2 0.269 0.022 1.207 0.106 2.813 0.238
4 0.268 0.020 1.268 0.114 3.210 0.279
8 0.258 0.019 1.257 0.112 3.120 0.282
16 0.255 0.020 1.133 0.112 3.267 0.323
32 0.270 0.021 1.346 0.132 2.920 0.260
64 0.257 0.023 0.640 0.075 4.496 0.372

Since a simple cubic lattice is used for the initial positions of the solvent atoms,
the maximum number of solvent atoms is 1000 (the values in initUcell also help
determine the region size), although overlap with chain monomers may reduce this
number very slightly. For n; = 16 the values in initUcell are increased to 12,
and for ny, = 24 to 16 — the region must be large enough to hold the chain in its
initial state and avoid unwanted wraparound effects. The empirically determined
value of bondLim ensures that bond length variation is confined to a fairly narrow
range. Constant-temperature dynamics and leapfrog integration are used.

Results® obtained from runs of 5 x 10° timesteps are listed in Table 9.1 for the
three chain lengths studied. The mean bond lengths (/) are practically the same in
each case; the value of o (/) is typically 2 x 107, so that bond length is seen to be
tightly controlled. The values of (R?) and (S?) are comparable to published results,
although the values do depend on solvent density [smi92]. The eigenvalue ratios
(g2/g1) and (g3/g1) provide clear evidence that the mean shape of the chain is far
from spherical, indeed the shape is more like a flattened cigar.

In order to obtain error estimates for (R?) and (5?) we resort to the block aver-
aging described in §4.2. The results of this analysis over a series of block sizes b
are shown in Table 9.2. The quality of the estimates is seen to decrease as the chain
length grows, suggesting a need for even longer runs.

& pr_anchprops
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9.5 Modeling structure formation

One of the more fascinating processes associated with polymers in solution is the
formation of large-scale spatial structures in certain types of three-component flu-
ids. Two of the fluid components are typically water and an oil-like liquid that
is insoluble in water. The third component is a relatively small fraction of am-
phiphilic chain molecules, or surfactants; the term amphiphilic means that one end
of the chain is hydrophilic, in other words, it has an affinity for water, and the
other end is hydrophobic with a preference for oil-rich surroundings. What occurs
in such systems is that the amphiphilic chains form surfaces separating the water
and oil; in the case of low oil concentration, the oil will be packaged by the chains
into droplets, or micelles, that are themselves water soluble; at higher oil concen-
trations, layers, bilayer vesicles, or a variety of other structures can form, again
corresponding to oil-rich regions separated from the water by surfaces formed out
of chain molecules [mye88, gel94]. There are many processes, both natural and
industrial, where this kind of supramolecular self-assembly occurs; the nature of
the constituent molecules and their interactions determine the morphology of the
structures that can develop.

Since phenomena of this kind occur for many different combinations of
molecules, it seems reasonable that the underlying behavior ought to be under-
standable using simplified models that ignore much of the specific molecular de-
tail [kar96]. In particular, these models should be able to reveal how the collec-
tive behavior of aggregates — whose sizes greatly exceed those of the individual
molecules — are related to the molecular properties. Due to the computationally
intensive nature of the MD approach it is important to simplify the model as much
as possible; this requires isolating the molecular characteristics that dominate the
behavior.

A particularly successful class of model is based on representing both the water
and oil molecules, labeled W and O, as simple spherical atoms. The forces between
pairs of like atoms, fww () and foo(r), involve the LJ potential (which is attractive
except upon close approach), whereas the interaction between unlike pairs, fwo(r),
is a soft-sphere repulsion used simply to prevent molecular overlap. This choice
ensures the immiscibility of the W and O species and, in order to reduce the number
of parameters, fww () and foo(r) are assumed identical. The surfactant molecules
are constructed from short, completely flexible chains, in which one or more W
atoms form the hydrophilic head group, and one or more O atoms make up the
hydrophobic tail; the atoms in the chain are linked by the springlike force f,,(r)
defined in (9.2.1). A series of studies based on this kind of approach — although
with a linear form for f,(r) — are described in [smi91, ess94, kar94].
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Even such a highly simplified representation provides ample scope for exploring
a range of phenomena by suitably modifying the model parameters. Here, the case
study focuses principally on micelle growth and on how the micelle sizes vary as
a function of time. Measuring the properties of these structures calls for cluster
analysis (§4.5) in order to mechanize the task of micelle identification. Minor ex-
tensions of the model (not discussed here) include varying the relative monomer
sizes (for example, using larger W atoms for the chain head groups), the relative
interaction strengths, and the chain lengths and structure; another possibility is re-
ducing the flexibility of the surfactants by introducing constraints (Chapter 10).

In general, as the simulated systems become more complicated, visualization
begins to play a particularly important role. The ability to follow the evolution of
the system as a whole, as well as the motions of individual molecules, can prove
extremely valuable, both while developing the simulations and then in analyzing
those aspects of the behavior that are not readily expressed in quantitative form.
This is particularly true in the present case and the case study will include ‘snap-
shots’ of the structures that develop in the course of the simulations; such images
can be generated from the molecular coordinates, but details of the algorithms and
three-dimensional graphics software required lie outside the scope of this book.
The role of computer graphics extends beyond mere static images, since sets of
snapshots produced over a period of time can be used to generate animated se-
quences showing the evolution of the system, from which time-dependent aspects
of the behavior can be deduced. Such a highly visual approach complements more
conventional quantitative methods of analyzing simulation results.

9.6 Surfactant models

Interactions

The program® used for simulating surfactant solutions is partly based on the earlier
program for a single chain in solution (§9.3). Now, however, there are multiple
chains and two species of atoms — representing oil and water molecules — in the
solution. The different kinds of interactions are the following:

o LJ between pairs of like atoms (OO and WW) and soft-sphere repulsion be-
tween unlike (OW) pairs, irrespective of whether both atoms belong to the so-
lution, or one atom belongs to the solution and the other is a monomer in a
chain, or both atoms are monomers in different chains;

« soft-sphere repulsion between nonlinked monomers in the same chain, irre-
spective of type;

« bonding forces between linked monomers in the same chain.

& pr_09_2
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The last of these are processed by ComputeChainBondForces (§9.3); the others
are handled using a slight modification of the neighbor-list method.

The neighbor list is constructed using cells large enough to include all the attrac-
tive OO and WW pairs; while this implies the inclusion of repulsive OW pairs that
may lie outside their cutoff range, it is a more concise approach than the alternative
of maintaining multiple neighbor lists for the different types of interactions. As-
sociated with each entry in the neighbor list is an element from an array intType
specifying the kind of interaction required by the atom pair, with the values 1 and
2 denoting soft-sphere and LJ, respectively; this is determined in advance when
constructing the neighbor list, rather than during the subsequent force evaluations.
The Mol structure is

typedef struct {
VecR r, rv, ra;
int inChain, typeA;
} Mol;

where typeA values of 1 and 2 distinguish O from W atoms and inChain is the
chain to which the atom belongs (or —1 if the atom is not a chain monomer).
The modifications to BuildNebrList are

real rrNebrA;
int iType, sameChain;

rrNebrA = Sqr (rCutA + rNebrShell);

if (w1 !=m2 || j2 < jO {
VSub (dr, mol[j1].r, mol[j2].r);
VVSub (dr, shift);
sameChain = (mol[j1].inChain == mol[j2].inChain &&
mol[j1].inChain >= 0); 10
iType = 0;
if (mol[j1].typeA == mol[j2].typeA && ! sameChain) {
if (VLenSq (dr) < rrNebrd) iType = 2;
} else if (! sameChain [| abs (j1 - j2) > 1) {
if (VLenSq (dr) < rrNebr) iType = 1; Is
}
if (iType > 0) {

nebrTab[2 * nebrTabLen] = j1;
nebrTab[2 * nebrTabLen + 1] = j2; 20
intType [nebrTabLen] = iType;
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where rCut is the usual soft-sphere interaction range and rCutA that of the LJ
interaction. The corresponding modifications to the neighbor-list version of the
function ComputeForces are

real rrCuté;
rrCutd = Sqr (rCutd);

if (rr < rrCut || intTypeln] == 2 && rr < rrCutd) { 5
rri = 1. / rr;
rri3 = Cube (rri);
fcVal = 48. * rri3 * (rri3 - 0.5) * rri;
uVal = 4. * rri3 * (rri3 - 1.);
if (intType[n] == 1) uVal += 1.; 10

Other parts of the calculation, namely, the integration, treatment of periodic bound-
aries and temperature adjustment, are handled in the usual way. The additional
array associated with the neighbor list requires

int *intType;

AllocMem (intType, nebrTabMax, int);

Initial state

Assigning the initial coordinates can be carried out in a variety of ways. The follow-
ing, chosen for its simplicity, demonstrates just one possibility and can be extended
to accommodate differing requirements.

As in other cases, atoms are initially positioned on the sites of a lattice, here the
simple cubic; since the nominal chain bond length can differ from the lattice spac-
ing, only one of the chain monomers is actually placed on a lattice site and the other
monomers are then suitably spaced along the x axis. The chains are positioned first;
random locations are chosen in a way that ensures the chains do not overlap and
the head—tail direction is randomly chosen. A temporary array initSiteOcc is
used to flag sites that become occupied in the course of this process’. Note that
this technique will fail at sufficiently high chain concentration (for a given chain
length) if there are no gaps of sufficient size between the chains already in place to
allow insertion of any remaining chains. Atom types and chain assignment are also
determined; the way atoms are numbered ensures that atoms belonging to a single

T Even though only one of the chain atoms is placed on a lattice site, we assume for simplicity that a number of
lattice sites equal to the chain length are filled, a correct assumption if the bond length is reasonably close to,
but does not exceed, the lattice spacing.



260 9 Flexible molecules @ i

chain are indexed sequentially from head to tail and that chain atoms have smaller

indices than solvent and solute atoms. Finally, the remaining lattice sites are filled

with O or W atoms, chosen randomly according to the required concentration.
New variables introduced here are

real solConc;
int chainHead;

for specifying the relative concentration of the O species and the number of mono-
mers in the hydrophilic chain head; other quantities are taken from §9.4. Coordinate
initialization is as follows; other initialization is carried out as before.

void InitCoords ()
{
VecR c, gap;
VecI cc;
int *initSitelcc, dir, j, n, nc, nn, nx, ny, nz; s

AllocMem (initSiteOcc, nMol, int);
DO_MOL initSiteOcc[n] = 0;
for (nc = 0; nc < nChain; nc ++) {
while (1) { 10
VSet (cc, RandR () * (initUcell.x - chainLen),
RandR () * initUcell.y, RandR () * initUcell.z);
n = VLinear (cc, initUcell);
for (j = 0; j < chainLen; j ++) {
if (initSiteOcc[n + j]) break; Is
F
if (j == chainLen) {

for (j = 0; j < chainLen; j ++) initSiteOcc[n + j] = 1;
break;
} 20
}

}
VDiv (gap, region, initUcell);
nc = 0;
n = 0; 25
nn = 0;

for (nz = 0; nz < initUcell.z; nz ++) {
for (ny = 0; ny < initUcell.y; ny ++) {
for (nx = 0; nx < initUcell.x; nx ++) {
VSet (¢, nx + 0.5, ny + 0.5, nz + 0.5); 30
VMul (c, c, gap);
VVSAdd (c, -0.5, region);
if (initSiteOcc[nn]) {
dir = (RandR () < 0.5) 7 0 : 1;
for (j = 0; j < chainLen; j ++) { 35
mol[n].r = c;
mol[n].r.x += (dir 7 j : chainlen - 1 - j) * rCut;
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mol[n].typeA = (j >= chainHead) ? 1 : 2;
mol[n].inChain = nc;

++ n; 40
}
nx += chainLen - 1;
++ nc;
nn += chainLen;
} else ++ nn; 45
}
}
}
nn = 0;
for (nz = 0; nz < initUcell.z; nz ++) { 50
for (ny = 0; ny < initUcell.y; ny ++) {
for (nx = 0; nx < initUcell.x; nx ++) {
VSet (c, nx + 0.5, ny + 0.5, nz + 0.5);
VMul (c, c, gap);
VVSAdd (c, -0.5, region); 55
if (initSiteOcc[nn]) {
nx += chainLen - 1;
nn += chainLen;
} else {
mol([n].r = c; 60
mol[n].typeA = (RandR () < solConc) ? 1 : 2;
mol[n].inChain = -1;
++ n;
++ nn;
} 65
}
}
}
free (initSiteOcc);
} 70

Cluster properties

In order to analyze micelle growth we will use the cluster analysis technique in-
troduced in §4.5 to measure the properties of clusters of O atoms; no distinction
is made between the O atoms of the solvent and those that are chain monomers.
If two O atoms are separated by less than the distance rClust they are regarded
as belonging to the same cluster. The results of such an analysis are, of course,
only relevant to the micelle problem if the O atoms in solution gather together in
compact groups surrounded by chains whose tails of O monomers tend to be on the
inside; establishing that this is indeed what occurs is not part of this study, although
computer generated images show that this is precisely the outcome.

The only change required to the functions used in the earlier cluster analysis
(§4.5) is in BuildClusters, where the condition for adding a bonded pair is
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changed to deal only with OO (type 1) atom pairs

if ((m1 !'=m2 || j2 < j1) && mol[j1].typeA == 1 &&
mol[j2].typed == 1)

Since, for convenience, the same cell array used for neighbor-list construction is
also used here, rClust must not be allowed to exceed the neighbor shell size, a
requirement that is normally satisfied. The input data includes

NameR (bondLim),

NameI (chainHead),

NameI (chainlLen),

NameI (nChain),

NameR (rClust), s
NameR (rCutd),

NameR (solConc),

9.7 Surfactant behavior

Micelle growth

In order to ensure adequate space for the molecules to organize themselves into
structures that are considerably bigger than the molecules themselves, the surfac-
tant simulations require larger systems than those considered in earlier case studies.
The results shown here are for a fairly modest system of 27 000 atoms, with an O
concentration of 0.05. The system includes 1600 chains of four monomers, two
of which are O atoms and two W; this represents a relatively high surfactant con-
centration, but it is necessary because the system is really quite small. Periodic
boundaries are used and the run is based on data that includes the following:

bondLim 2.1
chainHead 2
chainLen 4
density 0.8
initUcell 30 30 30
nChain 1600
rClust 1.8
rCuté 2.
solConc 0.05
stepAdjustTemp 1000
stepAvg 200
stepLimit 200000
stepSnap 2000

temperature 0.7
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Fig. 9.1. Number of micelle clusters (solid curve) and their mean size (dashed curve) for
low solute concentration.

As the run progresses, the system forms a number of compact O regions sur-
rounded by chains that are typically oriented with outward pointing W ends. More
detailed aspects of the behavior can depend on the relative concentrations and on
other factors such as chain length and interaction strength. Figure 9.1 shows the
number of micelles, as reported by the cluster analysis algorithm, together with the
mean cluster size, both as functions of time. These results appear consistent with
visual observation of the structures. The initial cluster growth from the uniform so-
lution is followed by a certain amount of cluster merging, although the decreasing
merge rate makes it difficult to determine whether the final state has been reached
in this run; the behavior of the larger structures will obviously be influenced by the
size of the system.

Structure formation

While quantitative measurements, such as the cluster analysis, provide some idea
of what is happening, there is no better way of examining the behavior than by
actually looking at the spatially organized structures as they form.

Recording the coordinates and other relevant data for producing images can
employ the function PutConfig described in §18.6. The parameters chainHead,
chainLen and nChain must be added to the output. Additional information
concerning atom types and chain membership must also be included in the
configuration snapshot file; such details are needed for creating the images. After

¥
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writing out the coordinate data, the following code records the atom types, whether
each atom belongs to a chain and if so which one,

DO_MOL rI[n] = ((mol[n].inChain + 1) << 2) + mol[n].typeA;
WriteFN (rI, nMol);

where WriteFN (defined in §18.2) writes out the entire array.

These details really need be specified only once at the start of the snapshot file;
here we have chosen to have all data blocks identical for simplicity (at the expense
of disk storage). Note that since high precision is not required for the graphics, the
coordinate data can be scaled to, for example, 10-bit integers for storage, so that a
coordinate x,y,z triple can be packed into a single 32-bit integer word; the resulting
additional savings in disk storage are likely to be worthwhile when large systems
and long runs are contemplated.

The program used to draw the configurations reads this file and displays an
animated sequence of frames depicting the evolution of the system. Since these
full-color images are based on the complete three-dimensional coordinates, they
are able to provide depth perception and can be rotated and zoomed interactively.
The details recorded in the file are adequate for the linear chains employed here,
assuming the monomers belonging to the chains are indexed as specified earlier;
by storing additional information about chain membership and connectivity more
general situations can be accommodated. As mentioned previously, details of the
actual visualization software are beyond the scope of the discussion, since spe-
cialized computer graphics techniques are required; monochrome renditions of the
screen images are reproduced here.

The figures show the final states of two systems after 2 x 10° timesteps. The first,
in Figure 9.2, is the system considered previously, in which a number of relatively
compact micelle clusters develop. The second, in Figure 9.3, shows a different
system, in which there are equal concentrations of the O and W species. This results
in a state in which each of the species occupies one or more extended regions
separated by surfactant chain layers; the layers are far from planar and their form
is also affected by the periodic boundaries.

Two kinds of visualization are used for the images. The first is a perspective
rendering of stick figures representing the actual surfactant molecules (in the case
of low solute concentration, the O atoms are included as points). The second shows
the continuous surfaces separating the domains of each species. Such surfaces are
produced by evaluating the O and W concentrations over a discrete grid and then,
with the aid of interpolation, locating the isosurface on which the concentrations
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Fig. 9.2. Formation of micelles at low solute concentration: two views of the same system,
one showing surfactant chains and solute O atoms (the solvent W atoms are omitted for
clarity), the other, the corresponding surfaces delineating the micelles.

Fig. 9.3. Surfactant layers separating O and W atoms that are present in equal concentra-
tions: one view shows the chains, the other the surfaces between the domains.

are equal (this is analogous to a contour plot, but in three dimensions); the surface
roughly follows the chain midpoint locations’.

These are, of course, many other structures that might develop, depending on the
model parameters. Considerable variation can also occur over repeated runs with
different initial conditions. The use of even larger systems would provide extra
space for structural development.

F In principle, the micelle surfaces should be closed; the fact that they do not appear to be so is due to the
periodic boundaries — the surfaces are in fact continuous across opposite faces of the simulation cell.
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9.8 Further study

Implement block averaging and determine the simulation lengths needed to
ensure convergence of the chain properties.

The length dependence of (R?) and (S?) has been studied extensively for
chains on lattices [kre88], and while MD cannot reach the extremely long
chains that lattice-based Monte Carlo methods can handle, the results for
shorter chains are still of interest; investigate.

Study the rate at which the chain structure relaxes by examining the time-
dependent autocorrelation function of a quantity such as (R?); relaxation
rates are very sensitive to chain length and solvent density [smi92].

How does the presence of a solvent alter the chain dynamics [dun93]?
Model a pure polymer liquid; here, reptation is considered to be an important
mechanism for molecular motion [kre92]. A suitable initial state must be
constructed for this problem.

Explore how the morphology of the surfactant structures depends on the
solute and chain concentrations and on the chain length.

Devise other ways of constructing initial states for surfactant simulations.
Generalize the surfactant model to allow for chains whose monomers vary
in size from head to tail.
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Geometrically constrained molecules

10.1 Introduction

Some internal degrees of freedom are important to molecular motion, while oth-
ers can be regarded as frozen. Classical mechanics allows geometrical relations
between coordinates to be included as holonomic constraints. We have already en-
countered constraints in connection with non-Newtonian modifications of the dy-
namical equations (Chapter 6); here the constraints occur in a Newtonian context,
so that there is little doubt as to the physical nature of the trajectories.

In this chapter we focus on a class of model where constraints play an impor-
tant role, namely, the polymer models used for studying alkane chains and more
complex molecules, in which a combination of geometrical constraints and internal
motion is required. The treatment of constraints is not the only new feature of such
models; the interactions responsible for bond bending and torsion are essentially
three- and four-body potentials, and some rather intricate vector algebra is required
to determine the forces. The particular alkane model described here incorporates
one further simplification, namely, the use of the often encountered ‘united atom’
approximation — the hydrogen atoms attached to each carbon atom in the backbone
are absorbed into the backbone atoms and are thereby eliminated from the problem.

10.2 Geometric constraints

Role of constraints

The notion of a constraint acting at the molecular level is merely an attempt at
simplification; the justification for assuming that certain bond lengths and an-
gles are constant is that, at the prevailing temperature, there is insufficient en-
ergy to excite the associated vibrational degrees of freedom (or modes) out of their
quantum ground states. Or, adopting a classical perspective, the potential function

267
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responsible for limiting the variation of the bond length or angle must involve a
very deep and narrow well; the natural frequency associated with such a potential
will be much higher than those of other kinds of internal motion and is therefore
likely to demand an intolerably small integration timestep. To avoid this situation it
is customary to eliminate such degrees of freedom entirely by the simple expedient
of replacing them with constraints.

The only unanswered question is whether a completely frozen mode is an ac-
curate way of representing a mode that is really only ‘stiff’, in the sense that its
vibration frequency is much greater than that of other modes and coupling with the
rest of the system is weak; there is no completely satisfactory answer since con-
straints and stiff potentials are both attempts to describe what is fundamentally a
quantum problem. The distinction between stiff and frozen modes is important in
statistical mechanics, and configurational averages depend on the choice [hel79];
the same is true for dynamical properties [van82].

Problem formulation

Consider a molecule whose structure is subject to one or more geometrical con-
straints; fixing the distance between any two atoms introduces a constraint of the
form

ri —ri>=0bj, (10.2.1)

thereby eliminating one degree of freedom. If i and j are bonded neighbors within
a molecule, then this constraint amounts to fixing the bond length; if they are next-
nearest neighbors, and the two intervening bonds also have constant length, then
it is the bond angle that is fixed. While these are examples of replacing stiff inter-
actions between pairs and triplets of atoms, there are other types of structural con-
straint, such as those used for maintaining the planarity of a molecule; constraints
must be formulated with care to ensure the correct selection is made [cic82]. As-
suming there are a total of n. distance constraints imposed on a particular molecule,
then if the kth constraint acts between atoms i; and ji, the constraints can be sum-
marized by the set of equations

ov=r;, —b. =0, k=1,...n (10.2.2)

ik Jk ik Jk

For simplicity, the indexing used here considers just a single molecule, but this is
readily extended. Note that, because constraints remove degrees of freedom that
would otherwise contribute to the temperature, allowance must be made when re-
lating temperature to kinetic energy.
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The equations of motion follow directly from the Lagrangian formulation de-
scribed in §3.2. The result (now allowing for different masses) is

mir; = fi + 8i (10.2.3)

where f; is the usual force term, m; the mass of the ith atom, or group of atoms
combined into a single monomer, and the additional forcelike term g; that ex-
presses the effect of the constraints on atom i can be written

g=-Y MVioy (10.2.4)
keCi

Here, C; denotes the set of constraints that directly involve r;, and the {A;} are the
Lagrange multipliers introduced into the problem (the reversed sign in (10.2.4) fol-
lows custom [ryc77]). The force f; includes all non-constraint interactions within
the molecule, as well as the intermolecular forces acting on individual atoms (or
monomers). There are three scalar equations of motion for each atom, as well as
n. constraint equations for the molecule as a whole, exactly the number needed to
evaluate the Lagrange multipliers and integrate the equations of motion.

Solving the problem can be carried out in various ways. A particularly simple
method is to advance the system over a single timestep by integrating the uncon-
strained equations of motion — ignoring g; — and then adjusting all the coordinates,
in practice by only a small amount, so that the constraints are again satisfied in the
new state [ryc77]. This adjustment is carried out by means of an iterative relax-
ation procedure that modifies each pair of constrained coordinates in turn until all
constraints are satisfied to the required accuracy. The alternative is to solve the full
problem, by first computing the Lagrange multipliers from the time-differentiated
constraint equations and then using these values in solving the equations of mo-
tion [edb86]. But, unlike the relaxation approach, which restores the constraints to
their correct values, here the constraints are subject to numerical integration error.
In practice, the error is small and can be corrected by, for example, including an
occasional series of relaxation cycles. Both methods will be described below, but
first the subject of how to label the atoms and constraints systematically must be
addressed.

Atom and constraint indexing

For the linear chain molecules discussed here the indexing problem has a sim-
ple solution. For more complex molecular structures, which can involve both tree
and ring topologies, the problem is a little more difficult [mor91]. We concentrate
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on the case of a simple chain subjected to bond-length constraints and, option-
ally, to bond-angle constraints as well. Once the constraints have been identified
the remainder of the processing need not be concerned with the topology of the
molecule.

Consider a polymer chain consisting of 7, monomers — atoms for short. If only
the bond lengths are constrained there will be a total of n. = n; — 1 constraints,
with constraint k£ relating the coordinates of atoms k and k + 1. If, on the other
hand, the chain is subject to both length and angle constraints, there will be n; — 1
of the former and n; — 2 of the latter, so n. = 2n, — 3. Each of the constraints
acting on atom i then involves one of the four atoms j =i £+ 1, i & 2; length and
angle constraints can be indexed in alternating fashion, leading to the simple result
that the kth constraint acts between atoms | (k + 1)/2] and [ (k +4)/2].

10.3 Solving the constraint problem

Matrix method

Of the two methods, solving the equations of motion together with the constraints
seems to be the more appealing approach from a strictly aesthetic point of view.
This entails expressing the constraint equations in matrix form and then solving
the resulting linear algebra problem using standard numerical techniques. The con-
straints will of course be subject to numerical error, but if this turns out to be suf-
ficiently small the results can be corrected from time to time using the relaxation
method discussed later in this section; such corrections can also be carried out by,
for example, using standard optimization methods to minimize a penalty function
that measures constraint deviations [edb86].
The constraint forces can be rewritten in the form

g = —22)»1("1‘,{]} = ZMik)»kSk (10.3.1)
keC; k=1
where
Sk = FminGy, jr) — TmaxGy, jr) (10.3.2)

and the elements of the matrix M, which has n,; rows and n. columns, are

+2 k e Cp s g <k
My =14 -2 keCy, Jji>ix (10.3.3)
0 kgcC,

Since s,f is constant, it follows that

§ s +8=0 (10.3.4)
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The acceleration s; appearing in (10.3.4) can be replaced by the actual equation of
motion obtained from (10.2.3). If the indices of the atoms associated with the kth
constraint are arranged so that i; < ji, and we define a new matrix

Lww = (M /mi, — Mo /m )y - se (10.3.5)

then the result of this replacement is

ne
> Lk =—(fi/mi, — fi/my) sc—§. k=1..n.  (103.6)
k=1
The matrix L is of size n. x n, and the only unknowns in (10.3.6) are the 1.
If only bond lengths are constrained there will be exactly two nonzero elements
in the ith row of M, corresponding to the two constraints that involve atom 7,

M1 =+2, M;=-2 (10.3.7)

If both lengths and angles are constrained there are four nonzero elements per row,
namely,

Mioia =Mz 3=+2, Mz =M =-2 (10.3.8)

As an example, the equation of motion of an atom that is subject to both kinds of
constraints and not located at the chain ends is

Fi = fi +2hoi_arioi + 200311 ; — 2hoi_11 i1 — 2A2iTi 42 (10.3.9)

where we assume that all masses are the same and use MD units. The correspond-
ing equations for the two atoms at either end of the chain omit the terms referring
to nonexistent neighbors.

The function that constructs M for the case of bond-length constraints follows;
the matrix is stored columnwise as a linear array mMat', chainLen corresponds to
n, and nCons to n..

void BuildConstraintMatrix ()

{
int i, m;
for (i = 0; i < chainLen * nComns; i ++) mMat[i] = 0; 5
for (i = 0; i < chainLen; i ++) {
m=1i-1;
if (m >= 0) mMat[m * chainLen + i] = 2;
++ m;
if (m < nCons) mMat[m * chainLen + i] = -2; 10
}

for (m = 0; m < nCons; m ++) {

+ mMat[m * chainLen + i] corresponds to M; | ;41; +1is required because m and i start from zero.

¥
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cons[m].distSq = Sqr (bondLen);
cons[m].sitel = m;
cons[m].site2 =m + 1; Is
}
}

An array of structures cons of type

typedef struct {
VecR vec;
real bLenSq, distSq;
int sitel, site2;
} Cons; s

appears in this function; vec holds the constraint vector s, bLenSq is the current
bond length rizk ;,» distSq corresponds to bizk ;,» and sitel and site2 denote the
atoms i; and j; involved in the constraint. The version of the function for con-

structing M in the case that angle constraints are also present® is

void BuildConstraintMatrix ()
{

int i, m;

for (i = 0; i < chainlLen * nCons; i ++) mMat[i]
for (i = 0; i < chainLen; i ++) {
m=2 % i - 3;
if (m >= 0) mMat[m * chainLen + i]
++ m;
if (m >= 0) mMat[m * chainLen + i]
m += 2;
if (m < nCons) mMat[m * chainLen + i] = -2;
++ m;
if (m < nCons) mMat[m * chainLen + i] = -2;
} 15
for (m = 0; m < nCons; m ++) {
cons[m].distSq = Sqr (bondLen);
if (m % 2 == 1) cons[m].distSq *= 2. * (1. - cos (bondAng));
cons[m].sitel =m / 2;
cons[m].site2 = (m + 3) / 2; 20
}
F

1]
(&)
w

]
N

]
N
S

Evaluating the Lagrange multipliers and including the constraint forces in the
equations of motion is the task of the function that follows. In the course of the
processing the matrix L, represented by 1Mat, is constructed and the linear equa-
tions (10.3.6) solved using a standard method such as LU decomposition [pre92];

o pr_10_1
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the solution is evaluated by the function SolveLineq described in §18.4. Both the
right-hand side of (10.3.6) and, subsequently, the solution (the set of A;/) are stored
in consVec.

void ComputeConstraints ()

{
VecR da, dv;
real w;
int i, m, ml1, m2, mDif, n, nn; 5

for (n = 0; n < nChain; n ++) {
nn = n * chainLen;
for (m = 0; m < nCons; m ++) {
VSub (cons[m].vec, mol[nn + cons[m].sitel].r, 10
mol[nn + cons[m].site2].r);
ViWrapAll (cons[m].vec);

}
m = 0;
for (m1 = 0; m1 < nCons; ml ++) { is
for (m2 = 0; m2 < nCons; m2 ++) {
1Mat[m] = 0.;
mDif = mMat[ml * chainLen + cons[m2].sitel] -
mMat [m1 * chainLen + cons[m2].site2];
if (mDif != 0) 20
IMat[m] = mDif * VDot (cons[ml].vec, cons[m2].vec);
++ m;
F
}
for (m = 0; m < nCons; m ++) { 25
VSub (dv, mol[nn + cons[m].sitel].rv,
mol[nn + cons[m].site2].rv);
VSub (da, mol[nn + cons[m].sitel].ra,
mol[nn + cons[m].site2].ra);
consVec[m] = - VDot (da, cons[m].vec) - VLenSq (dv); 30
}

SolveLineq (1Mat, consVec, nCons);
for (m = 0; m < nCons; m ++) {
for (i = 0; i < chainlLen; i ++) {

w = mMat[m * chainLen + i]; 35
if (w !'=0.)
VVSAdd (mol[nn + i].ra, w * consVec[m], cons[m].vec);
}
}
} 40

Any residual drift in the constraints can be removed when necessary, as discussed
later, but the drift should be sufficiently small that such adjustments are infrequent.
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A list of the new quantities appearing in the calculations, including some used
later, is

Cons *cons;
real *consVec, *1Mat, bondAng, bondLen, consDevA, consDevL, consPrec;
int *mMat, chainLen, nChain, nCons, nCycleR, nCycleV, stepRestore;

and the related array allocations (in A11ocArrays) are

AllocMem (cons, nCons, Cons);

AllocMem (consVec, nCons, real);
AllocMem (1Mat, Sqr (nComns), real);
AllocMem (mMat, chainLen * nCons, int);

The deviations of the supposedly constrained bond lengths from the correct val-
ues are easily monitored (here only averages are computed).

void AnlzConstraintDevs ()
{
VecR dri;
real sumL;
int i, n, ni; 5

sumL = 0.;
for (n = 0; n < nChain; n ++) {
for (i = 0; i < chainlen - 1; i ++) {
ni = n * chainLen + 1i; 10
VSub (dril, mol[ni + 1].r, mol[ni].r);
VWrapAll (dril);
cons[i].bLenSq = VLenSq (drl);
sumL += cons[i].bLenSq;
} 15
}
consDevL = sqrt (sumL / (nChain * (chainLen - 1))) - bondLen;
}

If bond angles are also constrained add

VecR dr2;
real sumA;

sumd = 0.;

for (i = 1; i < chainlen - 1; i ++) {
ni = n * chainLen + 1i;
VSub (dr1, mol[ni + 1].r, mol[ni].r);
VWrapAll (dril);
VSub (dr2, mol[ni - 1].r, mol[ni].r); 10
ViWrapAll (dr2);
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sumA += Sqr (VDot (drl, dr2)) / (coms[i - 1].bLenSq *
cons[i].bLenSq) ;
}

consDevA = sqrt (sumA / (nChain * (chainlen - 2))) -
cos (M_PI - bondAng);

Relaxation method

This approach to dealing with constraints — the so-called ‘shake’ method — [ryc77]
begins by advancing the system over a single timestep while ignoring the con-
straints. If the simple Verlet integration method (3.5.2) is used, we obtain a set of
uncorrected coordinates

rl(t +h) =2r;(t) = ri(t — h) + (h*/m;) f;(0) (10.3.10)

We now want to adjust all the r] to obtain corrected coordinates r; that satisfy
the constraints. This can be done by adding in the missing constraint force term
(10.2.4); since

Viop = 2r;j(t) (10.3.11)
this leads to
ri(t +h)=ri(t+h) —2(h2/m,-) Zkkrij(t) (10.3.12)
kGC,'

At this point we change the meaning of A;. It will no longer be regarded as a
Lagrange multiplier, but rather as an additional variable whose value is determined
by having the constraint satisfied to full numerical accuracy and not subject to the
truncation error of the integration method. This will ensure that, despite the numer-
ical error experienced by the atomic trajectories, the constrained bond lengths and
angles always maintain their correct values.

Implementation of the iterative method begins by setting r/ = r/(¢+h) and then,
for each constraint, applying corrections along the direction of r;;(z),

rl =1 = 2(h*/m)yri;(t)

, ) 5 (10.3.13)
ri =r;+2h"/m;)yr;)
The correction factor y is determined from the solution of
P =0 (10.3.14)

namely,

Il = 20*(L/mi + 1/mp)yryl* = b, (10.3.15)

¥
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which, to lowest order in 42, is
;2 2
ri;" — b; i

4h2(1/m; + l/mj)rl.’j Ty

1

Y (10.3.16)
The estimated coordinates r; and r} are then updated by using this value of y in
(10.3.13). The process is repeated, cycling through each of the constraints in turn,
until all the constraints satisfy

|ri’.2 — bl-zjl < 6,.bl~2j (10.3.17)

where ¢, is the specified tolerance’.
As shown here, the method is tied to a specific integration method, but a very
similar result can be used for restoring the constraints in general. Simply write

rp,="ri—Vyrij

) (10.3.18)
rp=rj+tyr;
where y is now just a small number, and then solve the equations
ri =0} (10.3.19)

iteratively as before; here we assume that all atoms have the same mass, otherwise
the inverse mass terms must be included to avoid moving the center of mass. If
terms quadratic in y are neglected, the solution is reminiscent of (10.3.16),

y=-L 1 (10.3.20)

and bl.zj can replace "12, in the denominator.

The velocities can be corrected in a similar manner, thereby ensuring that the
atoms have zero relative velocity along the direction of their mutual constraint;
corrections of this kind can also be incorporated in the original ‘shake’ method
[and83]. Each such restriction is equivalent to

Following the same approach as before, the velocities are adjusted by iterating the
equations

rp,="ri—Vyrij

.. (10.3.22)
rj = I‘J' + yr,j
where the value of y is now chosen to ensure that 7; ;1 =0,
y =107 (103.23)
2r;

T The value of A is just the sum of all the y corrections for that constraint, but it is not needed in the calculation.
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Since r;; already satisfies the constraint, bizj can be used in the denominator. The
process is repeated until all corrections fall below a specified tolerance.

The function for restoring the coordinates and velocities to their constrained
values in this more general case is

void RestoreConstraints ()

{
VecR dr, dv;
real cDev, cDevR, cDevV, g, ga;
int changed, m, ml, m2, maxCycle, n; 5

maxCycle = 200;
cDevR = cDevV = 0.;
for (n = 0; n < nChain; n ++) {
nCycleR = 0; 10
changed = 1;
while (nCycleR < maxCycle && changed) {
++ nCycleR;
changed = 0;
cDev = 0.; Is
for (m = 0; m < nCons; m ++) {
ml = n * chainlLen + cons[m].sitel;
m2 = n * chainlLen + cons[m].site2;
VSub (dr, mol[mi1].r, mol[m2].r);

VWrapAll (dr); 20
g = (VLenSq (dr) - cons[m].distSq) / (4. * cons[m].distSq);
ga = fabs (g);

cDev = Max (cDev, ga);
if (ga > consPrec) {
changed = 1; 25
VVSAdd (mol[mi].r, - g, dr);
VVSAdd (mol[m2].r, g, dr);
F
F
} 30
cDevR = Max (cDevR, cDev);
nCycleV = 0;
changed = 1;
while (nCycleV < maxCycle &% changed) {
++ nCycleV; 35
changed = 0;
cDev = 0.;
for (m = 0; m < nCons; m ++) {
ml = n * chainlLen + cons[m].sitel;
m2 = n * chainlLen + cons[m].site2; 40
VSub (dr, mol[mi1].r, mol[m2].r);
VWrapAll (dr);
VSub (dv, mol[ml].rv, mol[m2].rv);
g = VDot (dv, dr) / (2. * cons[m].distSq);
ga = fabs (g); 4
cDev = Max (cDev, ga);
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if (ga > consPrec) {

changed = 1;
VVSAdd (mol[mi].rv, - g, dr);
VVSAdd (mol[m2].rv, g, dr); 50
F
F
}
cDevV = Max (cDevV, cDev);
} 55

}

Here, consPrec is the tolerance used in establishing convergence. The limit
maxCycleis introduced as a safety measure; the number of iterations should gener-
ally not be much greater than ten or so (for small molecules), otherwise one might
be inclined to suspect the reliability of the whole approach.

10.4 Internal forces

Bond-torsion force

The torsional force associated with twisting around a bond is another example of an
effective interaction. This particular motion provides the means for local changes
in spatial arrangement of the polymer chain; simultaneous twisting around two
bonds, for example, can be enough to provide a crankshaft form of motion. The
force associated with the twist, or torsional degree of freedom, is defined in terms
of the relative coordinates of four consecutive atoms, here, for convenience, labeled
1...4; this force depends on the angle of rotation around the bond between atoms
2 and 3 — the dihedral angle. The dihedral angle is defined as the angle between the
planes formed by atoms 1,2,3 and 2,3,4 measured in the plane normal to the 2-3
bond; it is zero when all four atoms are coplanar and atoms 1 and 4 are on opposite
sides of the bond. Only these four atoms are directly affected by the torsion due to
this bond, and the purpose of the following analysis is to determine the force on
each.

Labeling the atoms, bonds and angles of a linear polymer in a systematic manner
is trivial for linear chains; for molecules with other topologies the problem is more
complex, requiring an algorithm (not addressed here) that systematically traverses
the graph describing the connectivity of the molecule. Here bond i joins atoms i — 1
and 7, and is denoted by the vector

b,' =r —Fr_| (1041)

As shown in Figure 10.1, the angle between bonds i — 1 and i is given by

bi_1- b
coso; = —— (10.4.2)
|bi—111b;]
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Fig. 10.1. The sites, bonds, bond angles and dihedral angles in a portion of an alkane
chain.

so that o; = 0 if the bonds are parallel; by convention, the ‘bond angle’ refers to
7w — o;. The dihedral angle associated with bond i is obtained from
(bi—1 x b;) - (b X biy1)

cosf; = — (10.4.3)
|bi—1 X bi||b; X b;y1]

There are two parts to the torsional force calculation; the functional dependence
on the dihedral angle 6;, and the vector algebra used to derive expressions for the
forces on each of the four affected atoms. We begin with the second part [pea79,
dun92]. If we define

cij=Db;-b; (10.4.4)
then we can express the bond and dihedral angles as

cose; = ¢y, /(ci—ri1ci)"? (10.4.5)

cosb; = p;/q"” (10.4.6)
where, for conciseness, we have introduced the quantities

Pi = Ci—1,i+1Cii — Ci—1,iCi i+1 (10.4.7)

qi = (Ci—l,i—lcii - C,'zflsi)(ciici+l,i+1 - Czi+1) (10.4.8)

The torque caused by a rotation about bond i produces forces on the four atoms
j=i—2,...i +1equalto

du(0) (@)

—Vrju(ei) = — m i, f/ (1049)

where u(6) is the torsion potential and

f}@ = V,, cos ; (10.4.10)

b
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It is clear that the sums of the forces and torques acting on the four atoms are zero,
therefore

i+1 .
> f7=0 (10.4.11)
j=i—2
i+1 '
dorix =0 (10.4.12)
j=i—2
so that
by +b) x £+ b x [ — b x £ =0 (10.4.13)

Since (10.4.11) and (10.4.12) provide two relations between the four f /-(i) we can
write

O =B+ B fY) (10.4.14)
so that (10.4.13) becomes
(biy + b + Bib) x £+ (Bl — biy1) x £, =0 (10.4.15)

and because both -f;'(i)Z and fi(jr)l are normal to b; it follows that

=—1—ci_1/cii

P i1 /€ (10.4.16)

B2 = ciiy1/cii
Hence,

FO ==+ eimnifei) £+ @i /i) £ (10.4.17)
and, since the four f ]-(i) sum to zero,

[0 = (cinifei) £ — (L + e fei) ) (10.4.18)

We next evaluate f;", @ and fl(jr)l by expanding (10.4.10),
£ =47 (4, pi — PiViy4i/2) (10.4.19)

In order to complete the evaluation we need the derivatives of all the scalar products
b, - bg with respect to r;; the full list (apart from results due to the symmetry
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Cap = Cpa) 18

2b; a=8=j
~2b; a=p=j+1
b1 —b; o=j, =j+1

V=17 JoB=0A (10.4.20)
by a=j pFJjJj+1
—bﬁ Ol:j+17 ,87&.]7J+1
0 otherwise

A certain amount of algebra using the above results leads to
i Cii
f}(_)z = 72 > [f]bi_l + b + l‘3b,'+1] (10.4.21)
q;" " (Ci—ri-1Cii — Ci_l,,')
i Cii
f}(Jr)] =5 > [I4bi_1 + tsb; + I6bf+1] (10.4.22)
q;" " (CiiCis1,iv1 — Ci,i+1)
where
I = Ci—1,i+1Cii — Ci—1,iCii+1
Iy = Ci—1,i—1Ci,i+1 — Ci—1,iCi—1,i+1
2
3 =C_,; —Ci—1.i-1Cii
37 bt L (10.4.23)

2
I4 = CiiCit1,i+1 — Cj iy
Is = Ci—1,i+1Ci,i+1 — Ci—1,iCi+1,i+1

Ie = —1I

Both force vectors are normal to b;, although this may be less than obvious
from an expression such as (10.4.21). In certain cases considerable simplification
is possible; if, for example, all |b;| = b and o; = «, then

bi_, - bj./b* —cos’a

1 —cos?a

cost; = (10.4.24)

The force expressions are simplified, but the reduction in computational effort is
probably not large enough to justify separate functions for individual cases.

The torsional potential function is typically expressed in polynomial form
[ryc78],

u(®) =y w;cos’ o (10.4.25)
j=0

so that the derivative used for the forces in (10.4.9) is

du(® .
u® _ _ Y jw, cos’ 16 (10.4.26)
j=1

B d(cost)
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Fig. 10.2. Bond torsion (solid curve) and bond angle (dashed curve) potentialfunctions.

For the alkane model, the potential (whose coefficients, in energy units appropri-
ate to the problem, are incorporated into the function listed below) is shown in
Figure 10.2. The deepest minimum is at the ‘trans’ angle & = 0, two secondary
minima at the ‘gauche’ angles (+2m/3), barriers at 6 = £ /3 and a maximum at
sr. Other similar functions are also in use for this model [cla90].

The torsional contribution to the interactions is computed by the following

function.

void ComputeChainTorsionForces ()

{
VecR dr1, dr2, dr3, wl, w2;
real c, cl11, c12, c13, c22, c23, ¢33, ca, cbl, cb2, cd,

crl, cr2, f, ti, t2, t3, t4, t5, t6, 5
glé] = {1.000, 1.310, -1.414, -0.330, 2.828, -3.394},
tCon = 15.50;

int i, n, nn;

for (n = 0; n < nChain; n ++) {
for (i = 0; i < chainlen - 3; i ++) {

nn = n * chainLen + 1i;
VSub (drl, mol[nn + 1].r, mol[nn].r);
VWrapAll (dril);
VSub (dr2, mol[nn + 2].r, mol[nn + 1].r); 15
VWrapAll (dr2);
VSub (dr3, mol[nn + 3].r, mol[nn + 2].r);
VWrapAll (dr3);
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c11 = VLenSq (dril);

c12 = VDot (drl, dr2); 20
c13 = VDot (drl, dr3);

c22 = VLenSq (dr2);

c23 = VDot (dr2, dr3);

¢33 = VLenSq (dr3);

ca = cl3 * c22 - c12 * c23; 25

cbl = c11 * c22 - c12 * c12;

cb2 = ¢c22 * c33 - c23 * c23;

cd = sqrt (cbl * cb2);

c =ca / cd;

f = - tCon * (g[1] + (2. * g[2] + (3. * g[3] + 30
(4. * g[4] + 5. * g[5] * c) * c) * c) * c);

tl = ca;

t2 = cl11 * ¢c23 - c12 * c13;

t3 = - cbi;

t4 = cb2; 35

t5 = ¢c13 * c23 - c12 * c33;

t6 = - ca;

crl = c12 / c22;
cr2 = ¢c23 / c22;
VSSAdd (w1, t1, dril, t2, dr2); 40
VVSAdd (w1, t3, dr3);
VScale (w1, f * c22 / (cd * cbl));
VSSAdd (w2, t4, drl, t5, dr2);
VVSAdd (w2, t6, dr3);
VScale (w2, f * c22 / (cd * cb2)); 45
VVAdd (mol[nn].ra, wl);
VVSAdd (mol[nn + 1].ra, - (1. + crl), wl);
VVSAdd (mol[nn + 1].ra, cr2, w2);
VVSAdd (mol[nn + 2].ra, cril, wl);
VVSAdd (mol[nn + 2].ra, - (1. + cr2), w2); 50
VVAdd (mol[nn + 3].ra, w2);
uSum += tCon * (g[0] + (g[1] + (g[2] + (g[3] +
(gl4] + g[5] * ¢c) * c) * c) * ¢c) * c);

Bond angle force

While bond lengths are generally held fixed by constraints, there is no clear prefer-
ence for bond angles, and both constraints and potentials are in use [cla90, ryc90].
Here we treat the case where interactions ensure that bond angles have only lim-
ited variation (the angle and torsion forces are assumed fully independent). The
notation is the same as before.
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A change in the angle «; produces forces on the three atoms j =i —2,i — 1,1
given by

du(w) £ (10.4.27)

V(o) = — 2
@) d(cosa) |,_,. "’

where u (o) is the angle potential and

f? =V, cosa (10.4.28)
The sum of the three forces is zero. More of the above algebra leads to

f,-(i)z = (ci—1,i—1¢i) " [(cizrifeiri—)bim1 — bi] (10.4.29)

£O = (crmriorei) 2 [Bio1 — (cim1,i/cin)bi] (10.4.30)

The potential associated with bond angle variation for the alkane model is
u(e) = (w/2)(cos o — cos ag)> (10.4.31)

where w is a constant [cla90] and cos «g = 1/3; a plot of the potential function is
included in Figure 10.2.

The function that carries out the force and energy computations for this interac-
tion follows.

void ComputeChainAngleForces ()
{
VecR drl, dr2, wl, w2;
real ¢, cl11, c12, c22, cCon, cd, f, aCon = 868.6;
int i, n, nn; s

cCon = cos (M_PI - bondAng);
for (n = 0; n < nChain; n ++) {
for (i = 0; i < chainLen - 2; i ++) {

nn = n * chainLen + 1i; 10
VSub (dr1, mol[nn + 1].r, mol[nn].r);
VWrapAll (dri);
VSub (dr2, mol[nn + 2].r, mol[nn + 1].r);
VWrapAll (dr2);
c11 = VLenSq (dril); Is
c12 = VDot (dril, dr2);
c22 = VLenSq (dr2);
cd = sqrt (cl11 * c22);
c =cl2 / cd;
f = - aCon * (¢ - cCon); 20
VSSAdd (w1, c12 / ci11, drl, -1., dr2);
VScale (w1, £ / cd);
VSSAdd (w2, 1., drl, - c12 / c22, dr2);
VScale (w2, £ / cd);
VVAdd (mol[nn].ra, wil); 25
VVSub (mol[nn + 1].ra, wl);
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VVSub (mol[nn + 1].ra, w2);
VVAdd (mol[nn + 2].ra, w2);
uSum += 0.5 * aCon * Sqr (c - cCon);
} 30
}
F

Other interactions

So far we have discussed just two of the interactions in the model, namely, the bond
torsion and bond angle forces. Pairs of atoms in each molecule that are neither di-
rectly linked by a constraint, nor jointly involved in these three- and four-body
forces, interact with the usual LJ potential (the butane molecule studied later on
is sufficiently small that there are no pairs in this category). Atoms in different
molecules interact with the same force, and solvent atoms can also be included
with similar or distinct interaction parameters, depending on what is being mod-
eled; here, for faster computation, the LJ interactions are replaced by soft spheres
[tox88].

If the neighbor-list method is used for computing the interactions between pairs
of atoms not involved in constraints or bond forces, the only change required in
BuildNebrList is the elimination of such pairs. This is done by modifying the
condition used to select atom pairs for the list,

if ((m1 !'=m2 || j2 < j1) && (mol[j1].inChain == -1 []
mol[j1].inChain != mol[j2].inChain || abs (j1 - j2) > 3))

The additional test checks whether both atoms belong to the same molecule (the
element inChain is used in the same way as for flexible chains, see §9.3) and
if this is true then how far apart they are. The interaction functions called from
SingleStep are (the first of them only if relevant)

ComputeChainAngleForces ();
ComputeChainTorsionForces ();
ComputeConstraints ();

Adjustment of minor constraint deviations is carried out at suitable intervals by

nCycleR = 0;
nCycleV = 0;
if (stepCount J, stepRestore == 0) {
RestoreConstraints ();
ApplyBoundaryCond (); 3
}
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To obtain reports on how well the constraints are preserved, add the following to
SingleStep prior to any call to RestoreConstraints,

if (stepCount J, stepAvg == 0) AnlzConstraintDevs ();

and to PrintSummary add

fprintf (fp, "constraint devs: 7,.3e J,.3e cycles: Jd 7d\n",
consDevL, consDevA, nCycleR, nCycleV);

The function RestoreConstraints should also be called at the beginning of the
run to correct the randomly assigned initial velocities.

10.5 Implementation details

Initial state and parameters

The initial state uses the same BCC lattice arrangement and planar zigzag (or trans)
conformation used previously for flexible chains (§9.3) but with distances and an-
gles (in InitCoords) modified,

by = bondLen * cos (bondAng / 2.);
bz = bondLen * sin (bondAng / 2.);

New input data items are

NameR (bondAng),

NameR (bondLen),

NameI (chainLen),

NameR (consPrec),

NameI (initUchain), 5
NameI (stepRestore),

and initialization (SetupJob) requires

AssignToChain ();
BuildConstraintMatrix ();

No solvent is used here, so the values of initUchain replace initUcell when
determining the region size. In the case of a simulation involving both multiple
chains and solvent there will be two independent densities — for chains and for
solvent atoms — that must be specified.

The effect of the constraints must be taken into account when choosing initial
velocities that correspond to a given temperature. The total number of degrees
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of freedom per chain is reduced from 3n; to 2n; 4 1 in the case of bond-length
constraints, and to ny + 3 if bond angles are also constrained. Allowance for this,
and the loss of three more degrees of freedom because of momentum conserva-
tion, are incorporated in the quantity velMag evaluated in SetParams (the value
of nCons shown here is for the case of length and angle constraints),

nCons = 2 * chainLen - 3;
velMag = sqrt ((NDIM * (1. - 1. / nMol) - (real) nCons / chainLen) *
temperature) ;

Temperature adjustment early in the run uses the function InitAdjustTemp.

The reduced length and energy units [ryc78] are o = 3.92A and €/kp = 72K.
All atoms (or monomers) are assumed to have mass 2.411 x 10723 g, and this is
defined as the unit of mass in MD units. The unit of time is then 1.93 x 10~!%s.
The bond length of 1.53 A used in the model corresponds to 0.390; the bond angle
is 109.47°. At the density of liquid butane (0.675 g/cm?) there are 0.422 molecules
per unit volume, again in MD units.

Structural properties

Properties of the chain fluid as a whole can be studied using the atomic RDF, as in
§4.3. An extra test is needed in EvalRdf to eliminate the very sharp peaks at the
fixed distance between nearest neighbors, and at either the fixed or narrowly spread
next-nearest neighbor distance,

if (mol[j1].inChain == mol[j2].inChain &&
mol[j1].inChain != -1 && abs (j1 - j2) < 3) continue;

The first example® of a measurement specific to this chain model constructs a
normalized histogram of the dihedral angle distribution averaged over all chains
and over all angles in each chain. If there is some reason to believe that the dis-
tribution depends on where the bond is located in the chain (not for the example
studied here), then the results for each bond would have to be maintained sepa-
rately. Usage of this function follows the familiar pattern established in earlier case
studies; Sgn is defined in §18.2.

void AccumDihedAngDistn (int icode)

{
VecR drl, dr2, dr3, w;
real cl11, c12, c13, c22, cosAngSq, dihedAng, t;
int i, j, n, nn; 5

o pr_10_2
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if (icode == 0) {
for (j = 0; j < sizeHistDihedAng; j ++) histDihedAngl[j] = O.;
} else if (icode == 1) {
for (n = 0; n < nChain; n ++) {
for (i = 0; i < chainlen - 3; i ++) {
nn = n * chainLen + 1i;
VSub (dr1, mol[nn + 1].r, mol[nn].r);
VWrapAll (dri1);
VSub (dr2, mol[nn + 2].r, mol[nn + 1].r);
ViWrapAll (dr2);
VSub (dr3, mol[nn + 3].r, mol[nn + 2].r);
VWrapAll (dr3);

c11 = VLenSq (dri1);
c12 = VDot (drl, dr2);
c13 = VDot (drl, dr3);
c22 = VLenSq (dr2);

cosAngSq = Sqr (c12) / (c11 * c22);

t = (c13 / Sqr (bondLen) - cosAngSq) / (1. - cosAngSq);
if (fabs (t) > 1.) t = Sgn (1., t);

dihedAng = acos (t);

VCross (w, dr2, dr3);

if (VDot (drl, w) < 0.) dihedAng = 2. * M_PI - dihedAng;
j = dihedAng * sizeHistDihedAng / (2. * M_PI);

++ histDihedAng[j];

}
}
} else if (icode == 2) {
t =0.;
for (j = 0; j < sizeHistDihedAng; j ++) t += histDihedAng[j];
for (j = 0; j < sizeHistDihedAng; j ++) histDihedAngl[jl] /= t;
}

The function is called from SingleStep by

if (stepCount >= stepEquil && (stepCount - stepEquil) 7
stepChainProps == 0) AccumDihedAngDistn (1);

New variables, input data items and array allocation are

real *histDihedAng;
int sizeHistDihedAng, stepChainProps;

NameI (sizeHistDihedAng),
NameI (stepChainProps),

AllocMem (histDihedAng, sizeHistDihedAng, real);
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The results are output as part of PrintSummary (§2.3),

i

real hVal;

int n;

fprintf (fp, "dihed ang\n");

for (n
hVal
fprintf (fp, "%5.1f J.4f\n", hVal, histDihedAng([n]);

}

= 0; n < sizeHistDihedAng; n ++) {
= (n + 0.5) * 360. / sizeHistDihedAng;

which is called (in SingleStep) as part of the sequence

AccumDihedAngDistn (2);
PrintSummary (stdout);
AccumDihedAngDistn (0);

to normalize the accumulated results prior to their output and zero them afterwards.

The next example® considers the bond angle distribution, and is obviously only
relevant when bond angles are controlled by a potential instead of constraints. The
computation is very similar to the preceding one (with the appropriate additional
variables and other details).

void AccumBondAngDistn (int icode)

{

VecR dr1, dr2;
real bondAng, cl1, cl2, c22, t;
int i, n, j, nn;

if (icode == 0) {

for (j = 0; j < sizeHistBondAng; j ++) histBondAng([j] = 0.;

} else if (icode == 1) {
for (n = 0; n < nChain; n ++) {

for (i = 0; i < chainlen - 2; i ++) {

nn = n * chainLen + 1i;

VSub (drl, mol[nn + 1].r, mol[nn].r);
VWrapAll (dril);

VSub (dr2, mol[nn + 2].r, mol[nn + 1].r);
VWrapAll (dr2);

c11 = VLenSq (drl);

c22 = VLenSq (dr2);

c12 = VDot (dril, dr2);

bondAng = M_PI - acos (c12 / sqrt (cl1l * c22));
j = bondAng * sizeHistBondAng / M_PI;

++ histBondAng[j];

& pr_10_3
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} else if (icode == 2) { 25
t =0.;
for (j = 0; j < sizeHistBondAng; j ++) t += histBondAng[j];
for (j = 0; j < sizeHistBondAng; j ++) histBondAngl[jl /= t;

}

30

The final example® considers the time dependence of the dihedral angle autocor-
relation function. The quantity measured is

C(t) = (cos(6;(t) — 6;(0))) (10.5.1)

and again no distinction is made between different bonds, although it is quite likely
that for longer chains the time dependence will vary with the position in the chain.
We also omit any mention of overlapped data buffers (§5.3) that could be used to
improve the quality of the results.

void EvalDihedAngCorr ()

{

}

VecR drl, dr2, dr3, w;
real cl1, c12, c13, c22, cosAngSq, dihedAng, t;
int i, j, n, nn; 5

dihedAngCorr [countDihedAngCorr] = O0.;

Jj=0;
for (n = 0; n < nChain; n ++) {
for (i = 0; i < chainLen - 3; i ++) { 10
nn = ...

(same as AccumDihedAngDistn)
if (VDot (dr1l, w) < 0.)
if (countDihedAngCorr == 0) dihedAngOrgl[j] = dihedAng;

dihedAngCorr [countDihedAngCorr] += Is
cos (dihedAng - dihedAngOrg(j]);
++ J;
}
}
++ countDihedAngCorr; 20

if (countDihedAngCorr == limitDihedAngCorr) {
for (n = 0; n < limitDihedAngCorr; n ++)
dihedAngCorr[n] /= nDihedAng;
PrintDihedAngCorr (stdout);
countDihedAngCorr = 0; 25
}

& pr_
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New variables and input data are

real *dihedAngCorr, *dihedAngOrg;
int countDihedAngCorr, limitDihedAngCorr, nDihedAng, stepDihedAngCorr;

NameI (limitDihedAngCorr),
NameI (stepDihedAngCorr), 5

and there is a quantity computed in SetParams,

nDihedAng = nChain * (chainLen - 3);

The array allocations, initialization and the function call for the processing (each
in the appropriate place) are

AllocMem (dihedAngCorr, limitDihedAngCorr, real);
AllocMem (dihedAngOrg, nDihedAng, real);

countDihedAngCorr = 0;

if (stepCount >= stepEquil && (stepCount - stepEquil) 7
stepDihedAngCorr == 0) EvalDihedAngCorr ();

10.6 Measurements

Constraint preservation

The first part of the case study is an examination of the behavior of the constraint
algorithm itself. The runs include the following input data:

bondAng 1.91063
bondLen 0.39
chainlLen 4
consPrec 1.0e-05
deltaT 0.002
density 0.422
initUchain 333
stepAvg 1000
stepEquil 1000
stepInitlzTemp 100
stepRestore 200
temperature 4.17

Since a BCC lattice is used for the initial state the total number of chains
is 54.
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The above data are for a model butane liquid in which both bond-length and
bond-angle constraints are applied. Constant-energy MD is used together with
PC integration. No energy adjustments are made after the correct temperature is
reached, but the energy drift over a run of 70 000 timesteps is just 4%.

If we examine the degree to which the constraints are maintained over the first
few thousand timesteps we find that if constraints are restored using the relax-
ation method every 200 timesteps (stepRestore), then the deviations measured
by AnlzConstraintDevs are typically 2 x 10~* for consDevL and 10~ for
consDevA. If restoration occurs every 100 timesteps then both deviations are re-
duced by a factor of three. Typical numbers of restoration cycles, nCycleR and
nCycleV, needed each time are in the approximate range 3—15.

The alternative is to replace the bond angle constraint by a potential. Because of
the very stiff nature of this interaction the timestep must be reduced by a factor of
four to 0.0005 in order to achieve the same degree of energy conservation. If con-
straints are restored every 1600 timesteps (equivalent to 400 of the larger timesteps
in the preceding test), then the deviation measured by consDevL is 6 x 1075; more
frequent restoration at intervals of 800 or 400 timesteps leads to deviations of size
2 x 107 and 6 x 107° (close to the tolerance level) respectively. Typically, 2—4
restoration cycles are required in this case.

Properties

The RDF obtained from the butane simulation is shown in Figure 10.3 for the case
of both bond-length and bond-angle constraints. Additional input data needed for
this computation are

1limitRdf 100
rangeRdf 2.2
sizeHistRdf 110
stepLimit 21000
stepRdf 50

Only the final set of averaged RDF values is considered. The computation excludes
the contributions from nearest and next-nearest neighbor pairs within each chain
whose separations are fixed by the constraints.

We now turn to the distribution of dihedral angles (6) for both kinds of con-
straint — bond length only and combined length and angle — and for the former the
bond angle (o) distribution as well. Total run lengths are (a relatively short) 70 000
timesteps for length and angle constraints and four times this value for length con-
straints. In the former case we omit the first two sets of output and average over the
remaining 15 sets; in the latter the first eight sets are skipped, leaving 64 sets for
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Fig. 10.3. Radial distribution function for liquid butane; intramolecular pairs with fixed
separations are excluded.

computing the average distributions. The extra input data are

sizeHistBondAng 36
sizeHistDihedAng 36

The results of this analysis appear in Figure 10.4. Combined length and angle
constraints produce a slightly sharper distribution at zero dihedral angle, although
it is not clear from the data shown whether the deviations are statistically signifi-
cant (the omitted error bars might also account for this difference). The bond an-
gle distribution is relatively narrow, as might be expected from the stiff potential
involved.

In Figure 10.5 we show the behavior of the dihedral angle autocorrelation func-
tion for the case of length and angle constraints. Additional input data needed here
are

limitDihedAngCorr 100
stepDihedAngCorr 100

Only a single series of measurements covering just 10000 timesteps are included
here; the large fluctuations in the results are due to the very limited sample size.
The large-time limit is determined by the average dihedral angle, but the results
have not been adjusted to allow for this.

¥
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Fig. 10.4. Butane dihedral angle distributions subject to length and angle constraints (solid
curve), and to length constraints alone (short dashes); for the latter, the narrow bond angle
distribution is also shown (long dashes).
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Fig. 10.5. Dihedral angle autocorrelation function.

10.7 Further study

10.1 Compare the computational requirements of the matrix method for con-
straints with the ‘shake’ method using just relaxation; how does the result
depend on chain length?
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10.7 Further study LRl

Include a thermostat that acts on the centers of mass of the molecules [edb86];
how can one apply the thermostat to the intramolecular motion as well?
Pressure can be studied after establishing that the constraints do not con-
tribute to the virial [cic86b]; measure the pressure for butane (or some other
molecule involving constraints) and compare with previous work.

Consider how to describe branched and ring polymers systematically in or-
der to construct their constraint matrices [mor91].

In addition to constraints that preserve distances and angles there is a need
for constraints that will, for example, maintain the planarity of a molecule;
how can this problem be handled without introducing more than a minimal
number of constraints [cic82]?

Study the rate at which crossings of the dihedral potential barrier occur
[bro90b].

There is almost unlimited scope for studying more complex molecules, with
proteins and other biopolymers providing the most exciting challenges; ex-
plore the capabilities and limitations of the MD approach in this field.

¥
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Internal coordinates

11.1 Introduction

In earlier chapters, polymer chains were represented as series of atoms coupled
by customized springs (Chapter 9), or atoms coupled by rigid links whose length
and angle constraints are handled by computations that supplement the timestep
integration (Chapter 10). It is also possible to formulate the problem so that the
only internal coordinates of the molecule are those actually corresponding to the
physical degrees of freedom. Though the formalism involved, which is based on
techniques used in robot dynamics, is more complex than the previous methods,
the elegance of the approach and the fact that it provides an effective solution to
the problem cannot be denied.

11.2 Chain coordinates

Consider a linear polymer chain of monomers. While in principle, each monomer
(assumed to be a rigid object) contributes six mechanical degrees of freedom —
abbreviated DOFs — to the chain, we use the argument of §10.2 to justify freezing
the DOFs associated with variations in bond length and bond angle. Thus, apart
from the first monomer which has six DOFs, each additional monomer contributes
just a single DOF to the chain. Each such DOF corresponds to torsional motion, or
twist, around the appropriate bond axis and is represented by a dihedral angle".

If each torsional DOF is regarded as a mechanical joint with a single rotational
DOF that is associated with the site at one end of the link, then the system corre-
sponds to a standard problem in the field of robotic manipulators for which tech-
niques are available that express the dynamical equations of motion in a particu-
larly effective manner [jai91, rod92]. Applications of the method to MD simulation

F The terms site and monomer (which, in the case considered here, consists of a single atom) are synonymous,
as are link and bond.

296
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k-2 =y k+2

Fig. 11.1. The elements in a section of the linked chain.

appear in [jai93, ber98]. The description of the approach presented in this chapter
deals with a linear chain having a single torsional DOF per joint [rap02a], but the
treatment is readily generalized (for example, variable bond angles can be intro-
duced, either by allowing two DOFs per joint, or by decomposing each joint into a
pair of coincident joints with just one DOF each). The formalism can also be ex-
tended to deal with treelike structures; closed loops can be handled, but with extra
effort needed to maintain ring closure.

The chain configuration is defined by the site positions r;; the bond vectors
between adjacent sites are denoted by by, where, as shown' in Figure 11.1,

Fes1 = e + b (11.2.1)

The internal configuration of the chain can be specified by a set of bond rotation
matrices R;. The transformation between coordinate frames attached to bonds k—1
and k (k > 1) involves two rotations: a rotation through the bond angle «; — where
cosay = l;k_ 1° I;k —about the axis X;_1, followed by a rotation through the dihedral
angle 6; about the joint axis zZ;_1. The (transposed) rotation matrix corresponding
to the two operations is

cos6, —sinf, O 1 0 0
R,:,l) ¢ = | sin6; cosf, 0] ]0 cosapy —sinoy
0 0 1 0 sing COS oy,
( cosf, — sin By cos oy sin O, sin o,
= | sin6; cos B, cosa; — cos by sin oy (11.2.2)
0 sin oy, COS ol

The complete rotation matrix for the kth bond is

Rl =RiR,,---R_,, (11.2.3)

T Note that the indices of by and o used in §10.4 are shifted by unity.
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where R( is the rotation matrix of the initial bond; in terms of this matrix,
(11.2.1) can be written

rew1 = e+ |be|[R(Z (11.2.4)

It is assumed that all bond lengths |b;| and angles o« are constant; thus the
only internal DOFs are those associated with the dihedral angles 6;. Define izk
to be the rotation axis of the joint between bonds £ — 1 and k that is fixed in the
frame of bond k — 1; here fzk = Z;_1. Insofar as indexing is concerned, there are
n, internal rotational joints labeled 1, ...n,, while the n, = n, 4+ 1 bonds are
labeled O, ...n, and the n, + 2 sites 0, ...n, + 1. In order to complete the de-
scription of the chain state, an additional joint with three translational and three
rotational DOFs is associated with the & = O site. This joint specifies the over-
all position and orientation of the chain; it is included in the general formalism
described below, but, as will become apparent subsequently, it requires special
treatment. A chain of n, + 2 sites has a total of n. + 6 DOFs, of which n, are
internal.

11.3 Kinematic and dynamic relations

If v, and @, are the linear and angular velocities of site &, then the velocities and
accelerations of adjacent sites are related by

@ = W1 + ilkék

Ve = Vg1 + @1 X by

@ = 1+ by + oy x by

Vg = Vg1 + @p—1 X b1 + @1 X (@r—1 X br_1)
(11.3.1)

While the mass elements of the chain are normally (and rather arbitrarily) re-
garded as residing at the sites, one can equally well associate these masses with the
bonds; if

r, =ri+ ¢ (11.3.2)

is the position of the center of mass of the atoms fixed to bond &, then the acceler-
ation of ry is

U, = U + @ X ¢ + & X (@ X ) (11.3.3)

Define f; to be the force and n; the torque acting on bond & across joint k (an
equal but opposite force and torque act on bond k —1 across the joint); the rotational
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and translational equations of motion for bond k are
Lo + o X (Lywy) = ng — Ry — € X i
= (b — &) X fr41 + 1
mvy = fi — firr + (11.3.5)

(11.3.4)

where f and nj are the externally applied force and torque on the bond (nj in-
cluding, of course, the torque produced by f;’). The left-hand side of (11.3.4) is just
d(Zywy)/dt; my and Z; are the mass of the bond and its moment of inertia, the lat-
ter evaluated relative to the bond center of mass (to be defined later) and expressed
in the space-fixed frame’. The terms of (11.3.4) and (11.3.5) can be rearranged,

ne = g + b X fig +myer x 0 + Lo + o x (Zrwy)

e . (11.3.6)
—np — ¢ X ff
Jie = fip F v, — ff (11.3.7)
Finally,
to=hy -y (11.3.8)

is the component of the torque along the rotation axis h & at joint k and corresponds
to the torsional interaction produced by twisting around bond k — 1; the functional
dependence of this quantity on the dihedral angle 6; is known.

11.4 Recursive description of dynamics

Spatial vector formulation

The relations (11.3.1) can be expressed in a more concise form by introducing six-
component ‘spatial’ vectors which combine rotational and translational quantities
(such as w and v). It is also convenient to represent some of the vectors by means
of antisymmetric matrices having the form

0 —u; U,
u= 1\ u, 0 —uy (11.4.1)
—Uy Uy 0

so that a vector cross product can be expressed as a matrix product

uv=uxv (11.4.2)

+ In dealing with rigid bodies it is often convenient to work in a body-fixed frame; this turns out not to be the
case here and vector components will be expressed in the space-fixed coordinate frame.

¥
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The result of combining the rotational and translational relations (11.3.1) is

I 0 - h\ -
@) _ ] =) (M) 6, (11.4.3)
Uy —bk,1 1 Vi1 0
: I 0\ (o A )
G.Jk _ ! (f’k 1 n k b + Wj—1 X NG
Vg by 1) \vy 0 @1 X (W1 X br_1)

(11.4.4)

or, equivalently,
Vi = ¢{_1 (Vier + H Wy (11.4.5)
Ar = ¢ 1 Aror + HI Wi + Xi (11.4.6)

where V) and A, are examples of spatial vectors. The 6 x 6 matrix

I 0
o= ! (11.4.7)
’ —bk,1 1

and its untransposed form — appearing in (11.4.10) — are used to propagate kine-
matic and dynamic information between joints. The spatial vector

T ilk
H, = (O) (11.4.8)

is the six-component joint axis vector (in the more general case of a joint with n
DOFs, H/ becomes a 6 x n matrix); the spatial vector

%1 0 R 6y
X =P Kk (11.4.9)
0 @1) \v— vy

contains the remaining terms of the acceleration equation; W; = 6, are the dihedral
angles; I and 0 denote appropriately sized unit and zero matrices’.
In a similar way, we can combine (11.3.6) and (11.3.7),

m\ (I b\ [ni N micr X v; + Lo + o X (Lrwp)
S 0 1)\ fin myv;

_ (”i tox ff) (11.4.10)
e

+ Italic capitals are used to represent most of the six-component vectors and the associated matrices; the type of
quantity will be apparent from the context.




11.4 Recursive description of dynamics e

and, in terms of spatial vectors, (11.4.10) and (11.3.8) can be expressed as
Fr = ¢r k1 Fr1 + MiAp + Yy (11.4.11)
Ty = Hy Fy (11.4.12)

Here we have used (11.3.3) and defined the symmetric 6 x 6 mass matrix

I o psa o
M, = F T ROk TG (11.4.13)
—my Cy mkl

The spatial vector Yy in (11.4.11) holds the remaining force contributions; with the
aid of the identity

Cr X [wp X (@ X ¢p)] = —wp X [er X (¢ X @p)] (11.4.14)

it can be written as

Y, — (cok(l'k — mkckck)wk> _ (”k + o X fk) (11.4.15)

mj @ Wy Cy f/f

For later use, we define a spatial vector corresponding to the external force and
torque

e e
qz(W+%Xﬁ> (11.4.16)
K

In order to use the recursion relations for V., Ay and Fy, the velocity and accel-
eration of the initial site, Vy and Ao, must be provided; for the final site, F,, 4 is
zero since there are no further bonds. Once the external forces have been evaluated
for the current chain state, the recursion relations (11.4.11) and (11.4.6) provide
the means for determining the W) (equivalent to &) in terms of known quantities,
which, along with A (which contains @y and ), can then be integrated over a
single timestep.

Stacked operators

The expressions (11.4.5), (11.4.6), (11.4.11) and (11.4.12) can be rewritten in a
concise, ‘stacked’ form

V=¢'V+HW (11.4.17)
A=¢"A+H'W+X (11.4.18)
F=¢F +MA+Y (11.4.19)

T =HF (11.4.20)

¥
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that combines all values of & for the chain. A quantity such as V', which contains all
the V; values, is also referred to as a spatial vector, while, for example, the matrix
¢ containing all the ¢ ;4 is known as a spatial operator. The contents of these
vectors and matrices are addressed in the next paragraph.

The spatial operator approach was originally developed for the case of a fixed
initial bond [rod92] — the base in the example of a robot arm — for which Vy = 0, so
that W = (91, .. .G'n,_)T is a vector with just n, components, and the other vectors
and matrices are sized accordingly. In order to remove the restriction of a fixed base
[jai95], six extra DOFs are added to the problem. The changes and the resulting
vector and matrix sizes are as follows:

« Redefine W = Vo, 91, .. .én,,)T as a vector with n, + 6 components; likewise
for W.

« Increase the size of the block diagonal matrix H = diag(H,, ... H,,) from
6n, X n, to 6(n, + 1) x (n, 4+ 6) by including an extra 6 x 6 block Hy = I, so
that now H = diag(/, Hy, ... H,,).

« The block diagonal matrix M is of size 6(n, + 1) x 6(n, + 1).

» Matrix ¢ is of similar size and its only nonzero blocks are those to the imme-
diate right of the diagonal, namely {¢o1, ... &n, —1.2,}-

e Vectors V, A, F, X and Y all have 6(n, + 1) components, for example, V =
Vo, ... V).

« Vector T is organized in the same way as W, with n, 4+ 6 components, and
Ty = 0 because the special £ = 0 joint exerts no torque.

These enlarged vectors and matrices are used in the subsequent analysis.

The next step is to define

&=U—-¢)"! (11.4.21)
so that
D =Pp+1 (11.4.22)

Since it is easily seen that " *! = 0, (11.4.21) is equivalent to
q)=[_|_¢_|_¢2+..._|_¢”r (11.4.23)

From (11.4.23), the elements of the upper triangular block matrix @, eacha 6 x 6
matrix, are

i j=i
Giiv1 i1, J>i+1
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Then, in terms of @, (11.4.17)—(11.4.20) become

V=0o"HW (11.4.25)

A=®"(H'W + X) (11.4.26)

F=®d(MX+Y) (11.4.27)

T=MW+HOMD'X+Y) (11.4.28)
where

M=HOM®P H" (11.4.29)

While M is a sparse, 6(n, + 1) x 6(n, + 1) block diagonal matrix, M is
only of size (n, + 6) x (n, + 6), but, though smaller, it is densely populated.
The equation of motion (11.4.28) can, in principle, be integrated numerically, and
this is one of the approaches to solving the problem, but the computation re-
quired to evaluate M~ in order to obtain W grows as (n, 4+ 6)> and so does
not provide a practical approach for any but the shortest of chains. The alterna-
tive method, to be described below, requires a computational effort that grows only
linearly with 7n,, together with what amounts to the inversion of a 6 x 6 matrix;
clearly this will prove to be a much more efficient calculation, even for relatively
small #n,.

Mass matrix inversion

The task of obtaining an explicit expression for M~! begins with the definition of
anew 6 x 6 matrix P, that is related to M, in the following way — the motivation
for this particular approach is discussed in [rod92] —

P = $ri1(I — Giry1 Hip ) Py gy + Mo (11.4.30)
where

Gy = P.H!D;' (11.4.31)

Dy = H P H| (11.4.32)

For joints with a single DOF, G; is a six-component vector and D; a nonzero
scalar. Note that P, is symmetric. Now introduce another new matrix

Vik+1 = Gk k1l — Gry1Hiyr) (11.4.33)

¥
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and substitute it in (11.4.30). The stacked forms of (11.4.30)—(11.4.33) are

P=vyP¢ +M (11.4.34)
G=PH'D! (11.4.35)
D=HPH" (11.4.36)
v =¢( —GH) (11.4.37)

Here, P and v are 6(n, + 1) x 6(n, + 1) matrices, and G is a (n, + 6) x 6(n, + 1)
block diagonal matrix (so that Gy Hyy) is a square matrix). The matrix D is of
size (n, 4+ 6) x (n, + 6); the first 6 x 6 diagonal block corresponds to Dy, while the
remaining 7n, diagonal elements are the scalars D;. From (11.4.34) and (11.4.37),

M=P—¢P¢p" + 9GHP" (11.4.38)
and so, by using (11.4.22),
OPMP" =P + PPP + PP'®" + PGPH D 'HPP' " (11.4.39)

Substituting (11.4.39) in (11.4.29) and then using GD = PH" from (11.4.35), as
well as (11.4.36), leads to

M=HPH" + HO$PH" + HP¢'®"H" + HO)PH D 'HP'®"H"
=+ H®pG)D(I + HPHG)' (11.4.40)
Note that the new factorization of M in (11.4.40) has the form of a product of three
(n, + 6) x (n, 4+ 6) square matrices.

Now it is a simple matter to invert M. Use a special case of the Woodbury
formula [pre92] for the inverse of a matrix’

I+010)7"'=1-0:U+0.00)7"'0> (11.4.41)
to obtain
(I +HP9G) ' =1 —HO( +¢GHD) '¢G (11.4.42)

If, by analogy with (11.4.21) for @, we define

=0U-y)"! (11.4.43)
then, from (11.4.37) and (11.4.22),

v l=9p '+ ¢GH (11.4.44)
so that (11.4.42) becomes

(I +H®PPG) ' =1 — HU¢G (11.4.45)

+ This can be proved by matching the terms of a formal power series expansion.
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Thus the inverse of (11.4.40) is
M= —-HY¢G)' D' (I — HV¢G)
and so, from (11.4.28),

W=(—-HY¢G)'D'(I — HU$G)[T —HOMP'X +7Y)]
= —HY$G)' DT — HV (¢GT + MP"X +Y)]

where we have used (11.4.44) to replace H(I — Y ¢GH)D by HY.
To eliminate ¥ rewrite (11.4.47) as

I+ H(D¢G)TW =D T — HU(¢GT + M®"X +7Y)]
and use (11.4.34) and (11.4.22) to obtain

MO = WP " +1)— Wy P &
=WUP+W( —y)PP ®
—WUP 4+ PY @7

Then, by defining
E=T—-HZ
where
Z=¥(@GT + PX +7Y)
it follows from the transpose of (11.4.35) that
(I +H®pG)Y'W =D'E -G ¢ @"X
Rearranging (11.4.52) and using A from (11.4.26) leads to

W=D'"E-G"¢"®"(H'W + X)
=D 'E—-G'¢p"A

g

(11.4.46)

(11.4.47)

(11.4.48)

(11.4.49)

(11.4.50)

(11.4.51)

(11.4.52)

(11.4.53)

It is also possible to eliminate ¥ from the definition of Z by substituting 7" from

(11.4.50) into (11.4.51),
I —¥Y9oGH)Z =V (pGE+PX +7Y)
and then using (11.4.44) to obtain

Z=®(PGE + PX +7Y)

(11.4.54)

(11.4.55)

¥
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The two equations (11.4.53) and (11.4.55) embody the required new recursion
relations. Use (11.4.21) and reintroduce the £ indices to obtain

Zi = Qri+1(Zir1 + Gry1 Ex) + PieXe + Yi (11.4.56)

Wi = D 'Ex — Gy 1 Avi (11.4.57)

Note that (11.4.56) and (11.4.57), which are intended to be used in opposite k

directions, provide the required results without the need for explicit evaluation of
M~! as implied by (11.4.28).

Recursion relations

The recursion relations for propagating the velocity, force and acceleration values
along the chain are as follows. The velocities (translational and rotational) V; are
obtained by starting with V{y and iterating (11.4.5),

Vi=o¢l_ 1 Vicr +H{Wi,  k=1,...n, (11.4.58)

The forces (including torques), as represented by Ey, as well as the matrices Dy
and G, are obtained by iterating (11.4.30) and (11.4.56),

Pr = i1 — Grp1 Hip 1) P gy + Mo

Dy = H P H/

Gy = P H! D,

Zi = Qrpr1Zpy + P X + Y

Ev =T, — HZy;

Z, =27+ GrEy

+ k=n,...0 (11.4.59)

where the additional quantity Z; has been introduced for computational conve-
nience, and the iteration begins with P,, 11 =0and Z, | = 0.

Finally, the values of W, (= 6;) are determined by starting with Ay, whose
evaluation is discussed below, and iterating (11.4.6) and (11.4.57),

A;c = ¢I€—1,kA/<—1
Wi = D;'Ex — G A, k=1,...n, (11.4.60)
Ay = A} + HI' Wi + X,
where A} is also introduced for convenience.
Recall that £ = 0 is associated with a ‘joint’ having the full six DOFs, so that
Hy =1, Xy =0and Wo = Ap. Now because A_; = 0, we have Ay = DO_IEO
from (11.4.60), and since Ty = 0,

DoAg = —Zo (11.4.61)
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where both Dy and Z, have already been determined by (11.4.59). Thus Ap can
be evaluated numerically by solving the set of six linear equations implicit in
(11.4.61).
The overall algorithm for a single timestep entails the following sequence of
steps using the two-stage leapfrog integrator:
« integrate the base velocities and coordinates, and the joint angular velocities
and angles (first leapfrog stage);
« iterate (11.4.58) to compute the velocities;
« compute the site coordinates;
» compute the external forces acting on the sites and the resulting torques, as well
as any other necessary quantities;
« iterate (11.4.59);
« solve the set of linear equations (11.4.61);
« iterate (11.4.60) to compute the accelerations;
- integrate the base velocities and joint angular velocities (second leapfrog
stage).

Interactions

Two kinds of interaction are used in this model. The first is the pair interaction used
to prevent overlap of the atoms (or atom groups) located at the sites of the chain.
Here, a simple soft-sphere repulsion will suffice, and the nearest and next-nearest
(and possibly further) neighbor pairs need not be examined because the fixed bond
angles preclude their close approach. In the case of a simulation involving multi-
ple chains in solution, similar interactions would be employed between atoms in
different chains and also with the atoms of a simple solvent.

The second kind of interaction is the torsion potential associated with each in-
ternal DOF. Here we assume the form of this potential to be

u(@y) = —u' cos(@, — 0') (11.4.62)

where u’ is the interaction strength, and the value of the dihedral angle 6’ can
be chosen, together with a suitable value of the fixed bond angle, to ensure that
the ground state has the correct amount of twist to produce a helix. The torque
appearing in (11.3.8) is then

t = —u'sin(@, — 6) (11.4.63)

Note the absence of the intricate vector algebra associated with the torque calcula-
tions required (§10.4) when using methods based on cartesian coordinates.

¥
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Inertia tensor

The elements of the inertia tensor appearing in (11.4.13) and (11.4.15) are defined
as

Yom =1l =]
(Zy)i = Kk (11.4.64)
e _ZmKrKirKj l#.]
kek

where the sum (or, if appropriate, the volume integral) is over all the mass elements
k that are rigidly attached to bond k, and the coordinates are expressed relative to
the center of mass in the space-fixed frame. Then, in (11.4.13) and (11.4.15),

T, i 2 _ 2 P—
Tk — myCrer)ij = (i i = i) l j (11.4.65)
(Zy)ij — mgcricj L # ]
where
me=Y_m (11.4.66)
kek
The (six-component) spatial momentum of the chain is
Z M,V (11.4.67)
k=0
and the kinetic energy is
ny ny
2D Imivf - v + o - (Tiwi)] = 5 Y VMLV (11.4.68)
k=0 k=0
11.5 Solving the recursion equations
Organizational matters
In the present case study® it is assumed that all bond lengths |b;| = b and all

bond angles oy = «, values referred to as bondLen and bondAng, respectively.
A spherical mass element, with a finite moment of inertia about its own center, is
associated with each site. Each bond has a single mass attached to its far (kK + 1)
site, except for the first bond which has masses attached at both ends (the £k =
0,1 sites); thus the external force associated with bond k acts on site k + 1, and
in the case of the first bond an external force acts on site 0 as well. The mass
and inertia matrix (in the space-fixed frame) of each link are denoted by mass and
inertiaM.

o pr_11_1
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For chains whose monomers are single atoms, the definition of each dihedral
angle involves three consecutive bonds. The general formulation described above
did not associate a torsion term with the last bond, but did include such a term for
the first bond. In order to make this first torsion term physically meaningful, it is
necessary to extend the chain with an additional bond and site on the other side
of the site with six DOFs. This effectively introduces an extra site with index —1
(although, in the program that follows, the array containing the site information
is shifted by unity to avoid the negative index); its relative coordinates, prior to
applying the overall rotation Ry in (11.2.3), are obtained from (11.2.2) using a
zero dihedral angle, namely —b R | z. The chain is now longer by one link, but the
initial two bonds and three sites form a rigid unit (with no internal DOFs) having
the correct bond angle. This additional site would not be required in the more
general case where the monomers are used to represent rigid assemblies of atoms,
rather than single atoms, since the first torsion term is then already associated with
the relative rotation of extended bodies.

The quantities required to describe the state of each bond and the atoms rigidly
attached to it are stored in the structure

typedef struct {
RMat rMatT;
VecR r, rv, omega, omegah, bV, cV, hV;
real inertiaM[9], fV[6], gV[6], xV[6], yV[6], mass, s, sv, svh, sa,
torqg; 5
} Link;

The (transposed) rotation matrix R; is denoted by rMatT. In the case of the initial
link (which is actually a virtual link from the origin to the initial site), R represents
the state of the three rotational DOFs associated with site zero, whereas for sub-
sequent links it is the cumulative product matrix describing the link orientation in
the space-fixed frame. Other members of the structure include the site coordinates
and velocity, r and rv, the link angular velocity in the space-fixed frame omega
(omegah and svh are discussed later), and s, sv and sa corresponding to the dihe-
dral angle and its first two derivatives. The vectors bV, cV and hv represent by, ¢
and ilk; the six-component quantities £V, gV, xV and yV correspond, respectively,
to F¢{, Gy, Xy and Y. Other variables required for a complete description of the
chain, including an array of all the Link structures for the bonds, are placed in the
structure

typedef struct {
Link *L;
VecR ra, wa;

¥
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int nLink;
} Poly; 5

Site coordinates and velocities

Given the current state of the chain, namely, the position and orientation of the ini-
tial link, the dihedral angles for all of the subsequent links, and the time derivatives
of these quantities, the site positions and velocities can be evaluated using (11.2.4)
and (11.4.58). The following function performs this task, including the evaluation
of the link rotation matrices; it, and many of the subsequent functions, are just the
software renditions of the algebra implicit in the formulation, in which much of the
work involves processing the six-component vectors and 6 x 6 matrices. The site
coordinates (and forces) are stored in an array of Site structures; the indices of
this array are shifted up by unity (relative to the normal chain link indices) to allow
for the additional site at the beginning of the chain, as already mentioned.

void ComputeLinkCoordsVels ()
{
RMat rMat;
VecR bEx, bVp, hVp;
real phiT[36], vs[6], vsp[6]; 5
int k;

VSet (bVp, 0., 0., bondLen);
VSet (hVp, 0., 0., 1.);
for (k = 0; k < P.nLink; k ++) { 10
if (k > 0) {
MVMul (P.L[k].hV, P.L[k - 1].rMatT.u, hVp);
BuildLinkRotmatT (&rMat, P.L[k].s, bondAng);
MulMat (P.L[k].rMatT.u, P.L[k - 1].rMatT.u, rMat.u, 3);
} 15
MVMul (P.L[k].bV, P.L[k].rMatT.u, bVp);
}
for (k = 0; k < P.nLink; k ++) {
VToLin (vs, 0, P.L[k].omega);
VToLin (vs, 3, P.L[k].rv); 20
BuildLinkPhimatT (phiT, k);
MulMatVec (vsp, phiT, vs, 6);
if (k < P.nLink - 1) {
VFromLin (P.L[k + 1].omega, vsp, 0);

VVSAdd (P.L[k + 1].omega, P.L[k + 1].sv, P.L[k + 1].hV); 25
}
VFromLin (P.L[k + 1].rv, vsp, 3);
}
for (k = 0; k < P.nLink; k ++)
VAdd (P.L[k + 1].r, P.L[k].r, P.L[k].bV); 30

for (k = 0; k < P.nLink + 1; k ++) sitel[k + 1].r = P.L[k].r;
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VSet (bEx, 0., - sin (bondAng), - cos (bondAng));

VScale (bEx, bondLen);

MVMul (site[0].r, P.L[0O].rMatT.u, bEx);
VVAdd (site[0].r, site[1].r); 35

}

Here,

#define VToLin(a, n, v)

al(n) + 0]

al(m) + 1] =

al(n) + 2]

= (v).x,
).y,
(v).z

#define VFromLin(v, a, n)

VSet (v, al[(m) + 0], al(mn) + 1], al(n) + 2])

are used for converting between vectors and array elements. In order to maintain
clarity in an already complex problem, this version of the software is designed to
accommodate just a single chain, but by replacing the single structure P by a dy-
namically allocated array of structures, with one element per chain, this limitation
can be removed.

The following macros are introduced for conciseness:

#define MAT(a, n, i, j)

#define M3(a, i, j)
#define M6(a, i, j)
#define DO(m, n)

(a)[(i) +n * (j)]

MAT (a, 3, i, j)

MAT (a, 6, i, j)

for (m = 0; m < n; m ++)

The functions referenced by ComputeLinkCoordsVels are then

void BuildLinkRotmatT (RMat *rMat, real dihedA, real bondA)

{

real

cb
sb
cd
sd
M3
M3
M3
M3
M3
M3
M3
M3
M3

cb, cd, sb, sd;

= cos (bondA);
= sin (bondA);
= cos (dihedA);
= sin (dihedA);

(rMat->u,
(rMat->u,
(rMat->u,
(rMat->u,
(rMat->u,
(rMat->u,
(rMat->u,
(rMat->u,
(rMat->u,

0,

. e

M

-

-

N R ONRKRONHR

-

0)
0)
0)
1)
1)
1)
2)
2)
2)

cd;
sd; 10

sd * cb;

cd * cb;

sb;

sd * sb; Is
cd * sb;

cb;
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for assembling the rotation matrix (11.2.2) used to transform between successive
links,

void BuildLinkPhimatT (real *phiT, int k)

{
int i, j;
Do (i, 6) { 5
DO (j, 6) M6 (phiT, i, j) = (i == j) 7 1. : 0.;
}
M6 (phiT, 3, 1) = P.L[k].bV.z;
M6 (phiT, 3, 2) = - P.L[k].bV.y;
M6 (phiT, 4, 0) = - P.L[k].bV.z; 10
M6 (phiT, 4, 2) = P.L[k].bV.x;
M6 (phiT, 5, 0) = P.L[k].bV.y;
M6 (phiT, 5, 1) = - P.L[k].bV.x;
}

for building the (6 x 6) matrix ¢” (11.4.7), and MulMatVec (§18.4) for multiplying
a matrix by a vector.

Link inertia and forces

The center of mass position and the inertia matrix associated with each link are
evaluated by the following function; it includes special treatment for the initial link
that has three sites attached.

void BuildLinkInertiaMats ()
{
VecR d;
real dd, iBall, inertiaK;
int k; s

inertiaK = 0.1;
for (k = 0; k < P.nLink; k ++) {

if (k > 0) {
P.L[k] .mass = 1.; 10
VSub (P.L[k].cV, sitel[k + 2].r, sitel[k + 1].r);

} else {

P.L[k] .mass = 3.;

VAdd (P.L[k].cV, site[2].r, site[1].r);

VVAdd (P.L[k].cV, sitel[0].r); Is
VScale (P.L[k].cV, 1./3.);

VVSub (P.L[k].cV, site[1].r);

}
iBall = inertiaK * P.L[k].mass;
VSub (d, sitelk + 2].r, sitel[k + 1].r); 20

dd = VLenSq (d);
M3 (P.L[k].inertiaM, 0, 0)
M3 (P.L[k].inertiaM, 1, 1)

dd - Sqgr (d.x) + iBall;
dd - Sqr (d.y) + iBall;
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M3 (P.L[k].inertiaM, 2, 2) = dd - Sqr (d.z) + iBall;

M3 (P.L[k].inertiaM, 0, 1) = - d.x * d.y; 25
0,
1,

M3 (P.L[k].inertiaM, 2) = -d.x *d.z;
M3 (P.L[k].inertiaM, 2)
if (k == 0) {
VSub (d, site[0].r, site[1].r);
M3 (P.L[k].inertiaM, 0, 0) += dd - Sqr (d.x); 30
M3 (P.L[k].inertiaM, 0, 1) -= d.x * d.y;
(similarly for the other matrix elements)

-d.y *d.z;

}

M3 (P.L[k].inertiaM, 1, 0)
M3 (P.L[k].inertiaM, 2, 0)
M3 (P.L[k].inertiaM, 2, 1)

M3 (P.L[k].inertiaM, 0, 1);
M3 (P.L[k].inertiaM, 0, 2); 35
M3 (P.L[k].inertiaM, 1, 2);

Now that the positions of all the chain sites have been determined, the forces
acting on the sites, both due to other sites in the chain that are not close neighbors,
and from other sources — other chains, solvent atoms, walls bounding the region —
can be evaluated; this computation is discussed later. The following function then
uses these site forces to compute the components of (11.4.16); it also evaluates the
torques due to bond torsion and the resulting contribution to the potential energy.

void ComputeLinkForces ()
{
VecR d, fc, tq, tql;
real ang;
int k; s

for (k = 1; k < P.nLink; k ++) {
ang = P.L[k].s - twistAng;
P.L[k].torq = - uCon * sin (ang);
uSum -= uCon * cos (ang); 10
}
for (k = 0; k < P.nLink; k ++) {
fc = sitelk + 2].f;
VCross (tq, P.L[k].bV, fc);
if (k == 0) { Is
VVAdd (fc, site[1].f);
VVAdd (fc, site[0].f);
VSub (d, site[0].r, site[1].r);
VCross (tql, d, site[0].f);
VVAdd (tq, tql); 20
}
VToLin (P.L[k].fV, 0, tq);
VToLin (P.L[k].fV, 3, fc);
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Here, uCon corresponds to u’ in (11.4.62) and twistAng to 6'; the indices of the
array site have again been shifted by unity. Note that if f; denotes the force

11 Internal coordinates

acting on site k, then (11.4.16) becomes

e _ [ b X fih

v =

for £ > 0, with appropriate additional contributions for k£ = 0.

Computing the link accelerations involves recursion relations that traverse the chain
in both directions. Prior to this, the X; and Y, vectors defined in (11.4.9) and

fin

Link accelerations

(11.4.15) must be evaluated,

void BuildLinkXYvecs (int k)

{

VecR dv, w, wl, w2;

int i;

if (k > 0) {

VCross (w, P.L[k - 1].omega, P.L[k].hV);

VScale (w, P.L[k].sv);
VToLin (P.L[k].xV, 0, w);
VSub (dv, P.L[k].rv, P.L[k - 1].rv);
VCross (w, P.L[k - 1].omega, dv);
VToLin (P.L[k].xV, 3, w);

} else {
DO (i, 6) P.L[k].xV[i] = 0.;

}

MVMul (w, P.L[k].inertiaM, P.L[k].omega);

VCross
VToLin
VCross
VCross
VScale
VToLin

(w1, P.L[k].omega, w);
(P.L[k].yV, 0, wl);

(w, P.L[k].omega, P.L[k].cV);
(w2, P.L[k].omega, w);

(w2, P.L[k].mass);
(P.L[k].yV, 3, w2);

]

(11.5.1)

Applying the backward (11.4.59) and forward (11.4.60) recursion relations leads
to the link accelerations. Once again, the software merely implements the algebra
contained in these relations. Vector quantities whose only role is to transfer values
between successive iterations, such as Z, need not be assigned permanent storage
and are represented as arrays, such as zp, that are overwritten during each iteration.
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void ComputeLinkAccels ()
{
real as[6], aspl6], h[3], mMat[36], phi[36], phiT[36], pMat[36],
tMat1[36], tMat2[36], z[6], zpl[6], zt[6], dk, e;
int i, j, k;

DO (i, 6) zp[i] = 0.;
for (k = P.nLink - 1; k >= 0; k —-) {
BuildLinkPhimatT (phiT, k);
Do (i, 6) {
Do (j, 6) M6 (phi, i, j) = M6 (phiT, j, i);
}
BuildLinkXYvecs (k);
BuildLinkMmat ((k == P.nLink - 1) 7 pMat : mMat, k);
if (k < P.nLink - 1) {

DO (i, 6) {
Do (j, 6) M6 (tMatl, i, j) = (i == j) ? 1. : 0.;
}
VToLin (h, 0, P.L[k + 1].hV);
Do (i, 6) {

D0 (j, 3) M6 (tMati, i, j) -= P.L[k + 1].gV[i] * h[j];
F
MulMat (tMat2, tMatl, pMat, 6);
MulMat (tMatl, tMat2, phiT, 6);
MulMat (pMat, phi, tMatl, 6);
Do (i, 6) {
DO (j, 6) M6 (pMat, i, j) += M6 (mMat, i, j);

}
}
if (k > 0) {
VToLin (h, 0, P.L[k].hV);
dk = 0.;
Do (i, 3) {
DO (j, 3) dk += h[i] * M6 (pMat, i, j) * h[jI;
b
}

MulMatVec (z, phi, zp, 6);
D0 (i, 6) z[i] += P.L[k].yV[i] - P.L[k].fV[i];
if (k> 0) {
Do (i, 6) {
P.L[k].gV[i] = 0.;
DO (j, 3) P.L[k].gV[i] += M6 (pMat, i, j) * h[j];
P.L[k].gV[i] /= dk;
}
MulMatVec (zt, pMat, P.L[k].xV, 6);
DO (i, 6) z[i] += zt[i];
e = P.L[k].torqg;
DO (i, 3) e -= h[i] * z[i];
P.L[k].sa = e / dk;
DO (i, 6) zp[i] = z[i] + e * P.L[k].gV[i];
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¥
}
SolvelLineq (pMat, z, 6);
DO (i, 6) as[i] = - z[i];
VFromLin (P.wa, as, 0); 55
VFromLin (P.ra, as, 3);
for (k = 1; k < P.nLink; k ++) {
BuildLinkPhimatT (phiT, k - 1);
MulMatVec (asp, phiT, as, 6);
DO (i, 6) P.L[k].sa -= P.L[k].gV[i] * aspl[il; 60
if (k < P.nLink - 1) {
DO (i, 6) as[i] = asp[i] + P.L[k].xV[i];
VToLin (h, 0, P.L[k].hV);
DO (i, 3) as[i] += h[i] * P.L[k].sa;
} 65
}
}

The matrices M, are constructed by

void BuildLinkMmat (real *mMat, int k)
{

VecR w;

int i, j;

Do (i, 6) {
Do (j, 6) {
if (1 <3¢& j<3)
M6 (mMat, i, j) = M3 (P.L[k].inertiaM, i, j);
else M6 (mMat, i, j) = (i == j) ? P.L[k].mass : 0.; 10
F
}
VSCopy (w, P.L[k].mass, P.L[k].cV);

M6 (mMat, 2, 4) = w.x;

M6 (mMat, 1, 5) = - w.x; Is
M6 (mMat, 0, 5) = w.y;

M6 (mMat, 2, 3) = - w.y;

M6 (mMat, 1, 3) = w.z;

M6 (mMat, 0, 4) = - w.z;

M6 (mMat, 4, 2) = M6 (mMat, 2, 4); 20

(fill other entries of symmetric matrix)

The call to SolveLineq (§18.4) solves the set of linear equations in (11.4.61)
forD, using the standard LU decomposition method.
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11.6 Implementation details

If the simulation treats a single chain without solvent, then it is reasonable just
to use cells and not a neighbor list (this is a minor issue). Irrespective of ap-
proach, there are no direct pair interactions between nearest-, second- or third-
nearest neighbor monomers, because these are taken into account by either the
rigid structure or the torsional interactions. Thus for the cell method — the function
is now called ComputeSiteForces — the rule used to select interacting atom pairs
in ComputeForces (§3.4) is changed to

if ((m1 !'=m2 || j2 < j1) && abs (j1 - j2) > 3)

The double loop over the contents of pairs of cells can be skipped if either of the
cells is empty, a likely occurrence for the case of just a single chain; this is done by
including the test

if (cellList[m1] < 0) continue;

immediately after the evaluation of the cell index m1 and likewise for the index m2.

The integration routine updates the state of the initial link, as well as the dihedral
angles. Part of the following function is borrowed from the one used for the rotation
matrix approach to rigid bodies in §8.5, while the rest is just a straightforward
treatment of the dihedral angle variables.

void LeapfrogStepLinks (int part)
{
RMat mc, mt;
VecR t;
int k; s

if (part == 1) {
VVSAdd (P.L[0O].omega, 0.5 * deltaT, P.wa);
VVSAdd (P.L[0].rv, 0.5 * deltaT, P.ra);
for (k = 1; k < P.nLink; k ++) 10
P.L[k].sv += 0.5 * deltaT * P.L[k].sa;
VSCopy (t, 0.5 * deltaT, P.L[0].omega);
BuildStepRmatT (&mc, &t);
MulMat (mt.u, mc.u, P.L[0O].rMatT.u, 3);
P.L[0].rMatT = mt; 15
VVSAdd (P.L[0].r, deltaT, P.L[0].rv);
for (k = 1; k < P.nLink; k ++) P.L[k].s += deltaT * P.L[k].sv;
} else {
VVSAdd (P.L[0O].omega, 0.5 * deltaT, P.wa);
VVSAdd (P.L[0].rv, 0.5 * deltaT, P.ra); 20
for (k = 1; k < P.nLink; k ++)
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P.L[k].sv += 0.5 * deltaT * P.L[k].sa;
}
}

In order to ensure that the angular velocity values (omega and sv) used in the
recursion relations correspond to the same instant in time as the coordinates, these
values can optionally be updated over an additional half timestep at the end of
the first part of the procedure, after storing the current values. Then, at the start
of the second part, the original values are restored. This leads to reduced energy
fluctuations.

P.L[0].omegah = P.L[0].omega;
VVSAdd (P.L[0O].omega, 0.5 * deltaT, P.wa);
for (k = 1; k < P.nLink; k ++) {
P.L[k].svh = P.L[k].sv;
P.L[k].sv += 0.5 * deltaT * P.L[k].sa; 5
}

P.L[0].omega = P.L[0].omegah;
for (k = 1; k < P.nLink; k ++) P.L[k].sv = P.L[k].svh;

The dihedral angles are reset to the [0, 27 ] range by

void AdjustLinkAngles ()

{
int k;
for (k = 1; k < P.nLink; k ++) { 5
if (P.L[k].s >= 2. * M_PI) P.L[k].s -= 2. * M_PI;
else if (P.L[k].s < 0.) P.L[k].s += 2. * M_PI;
}
}

The following function evaluates the kinetic and total energies; the quantities are
normalized per degree of freedom, as is appropriate for an isolated chain’.

void EvalProps ()
{
VecR w1, w2;
int k;

kinEnVal = O0.;
for (k = 0; k < P.nLink; k ++) {
MVMul (w2, P.L[k].inertiaM, P.L[k].omega);

T The values of rv and omega for links beyond the first could be reevaluated (using ComputeLinkCoordsVels)
at the end of the timestep before using them here.
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VCross (w1, P.L[k].cV, P.L[k].rv);
kinEnVal += 0.5 * (P.L[k].mass * (VLenSq (P.L[k].rv) +
2. * VDot (P.L[k].omega, w1)) + VDot (P.L[k].omega, w2));
}
totEnVal = (kinEnVal + uSum) / nDof;
kinEnVal /= nDof;
F

The function for resetting the temperature to a specified value is

void AdjustTemp ()
{

real vFac;

int k;

vFac = sqrt (temperature / (2. * kinEnVal));
VScale (P.L[0].rv, vFac);

VScale (P.L[0].omega, vFac);

for (k = 1; k < P.nLink; k ++) P.L[k].sv *= vFac;
ComputeLinkCoordsVels ();

EvalProps ();

10

The functions introduced above are called by SingleStep, which includes the

sequence of calls (for a container with hard walls)

LeapfrogStepLinks (1);
AdjustLinkAngles ();
ComputeLinkCoordsVels ();
BuildLinkInertiaMats ();
ComputeSiteForces ();
ComputeWallForces ();
ComputeLinkForces ();
ComputeLinkAccels ();
LeapfrogStepLinks (2);

In SetParams the following values are set,

nSite = chainLen + 1;

nDof = chainlLen + 4;

bondAng = 2. * M_PI / helixPeriod;

twistAng = asin (1.1 * rCut / (helixPeriod * bondLen));

where the bond parameters are tailored to produce a helical ground state with peri-
odicity helixPeriod and a small amount of space between nearby monomers in
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adjacent turns of the helix. Memory allocation (A11ocArrays) includes

11 Internal coordinates

AllocMem (P.L, chainlLen, Link);
AllocMem (site, nSite, Site);

i

The initial state of the chain is generated by the following function; it produces a

coiled chain with a relatively large coil radius, and a local zigzag conformation for
each successive pair of bonds (as shown later in Figure 11.3). This configuration
is far removed from the ground state favored by the torsion potential. Dihedral
angle time derivatives are randomly set, the translational velocity of the initial site
is adjusted so that the center of mass of the entire chain is at rest and the chain is

shifted to the center of the region; velocities are then scaled to correspond to the
desired temperature.

void InitLinkState ()

{

VecR rs, vs, w;
real mSum;
int j, k;

P.nLink = chainlLen - 1;
VZero (P.L[0].r);
VZero (P.L[0].rv);
VZero (P.ra);
DO (j, 9) P.L[0].rMatT.ulj] = (j % 4 ==0) 7 1.
VZero (P.L[0].omega);
VZero (P.wa);
for (k = 1; k < P.nLink; k ++) {
P.L[k].s = M.PI + ((k 7, 2==0) ? 0.42 : -0.4);
P.L[k].sv = 0.2 * (1. - 2. * RandR ());
P.L[k].sa = 0.
}
ComputeLinkCoordsVels ();
BuildLinkInertiaMats ();
VZero (rs);
VZero (vs);
mSum = 0.;
for (k = 0; k < P.nLink; k ++) {
VAdd (w, P.L[k].r, P.L[k].cV);
VVSAdd (rs, P.L[k].mass, w);
VCross (w, P.L[k].omega, P.L[k].cV);
VVAdd (w, P.L[k].rv);
VVSAdd (vs, P.L[k].mass, w);
mSum += P.L[k].mass;
}
VVSAdd (P.L[0].r, -1. / mSum, rs);
VVSAdd (P.L[0].rv, -1. / mSum, vs);
ComputeLinkCoordsVels ();

’
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BuildLinkInertiaMats (); 35
ComputeSiteForces ();
ComputeLinkForces ();
EvalProps ();
AdjustTemp ();
} 40

The functions AccumProps and PrintSummary are used to accumulate and output
averages, as in previous examples; the former must include

totEnergy.val = totEnVal;
kinEnergy.val = kinEnVal;

Additional variables introduced here are

Poly P;

Site *site;

real bondAng, bondLen, kinEnVal, totEnVal, twistAng, uCon;
int chainLen, helixPeriod, nDof, nSite;

and the input data must now include (the region size is specified explicitly here
instead of via the density)

NameR (bondLen),

NameI (chainLen),

NameI (helixPeriod),

NameR (region),

NameR (uCon), 5

If the bond angles and torsional interactions have been suitably chosen (as is the
case here), then at low temperature the chain should collapse into a helical ground
state, unless it manages to become entangled in a manner that somehow prevents
this occurring. An order parameter quantifying the structure of the ground state can
be defined as

(11.6.1)

where d; = by_1 x by; for a well-formed helix S & 1 and any entanglement pro-
duces a noticeable reduction in this value. The quantity S is evaluated as follows.

void EvalHelixOrder ()
{
VecR drl, dr2, rc, rcSum;
real f;
int k; 5
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VZero (rcSum);
for (k = 0; k < P.nLink; k ++) {
VSub (dri1, sitel[k + 1].r, sitel[k].r);
VSub (dr2, sitelk + 2].r, sitelk + 1].r); 10
VCross (rc, drl, dr2);
f = VLen (rc);
if (f > 0.) VVSAdd (rcSum, 1. / f, rc);
}
helixOrder = VLen (rcSum) / P.nLink; Is
}

11.7 Measurements
Equilibrium

In order to test how well energy is conserved, a run was carried out using the
following data:

bondLen 1.3
chainLen 80

deltaT 0.001
helixPeriod 8

region 24. 24. 24.
stepAvg 2000
stepEquil 10000
stepLimit 100000
temperature 2.

uCon 1.

The various velocities are adjusted periodically during the equilibration period, and
then the system is allowed to proceed with no further intervention. The results are
summarized in Table 11.1 and it is apparent that, left unattended, the total energy
is subject to a slight amount of drift.

Chain collapse

The goal of this case study® is to follow the behavior of the chain as it gradually
cools from a high temperature state. The fixed bond angles and the preferred dihe-
dral angles have already been chosen so that the minimum energy ground state of
the chain is a neatly coiled helix; the question is whether the chain will be able to
collapse into this ordered conformation, or will this process be obstructed by the
chain becoming entangled with itself.

& pr_11.2



Table 11.1. Energy conservation

11.7 Measurements

timestep (E) o(E) (Ex) o(Eg)
20000 0.7466 0.0001 0.9334 0.0283
40000 0.7472 0.0005 0.9130 0.0307
60000 0.7456 0.0008 1.0019 0.0109
80000 0.7561 0.0003 0.9996 0.0131
100 000 0.7547 0.0009 1.0556 0.0165

To achieve progressive temperature reduction, add to SingleStep

if (stepCount J, stepReduceTemp == 0 && temperature > tempFinal) {

temperature *= tempReduceFac;

AdjustTemp ();
}

and, after incorporating the additional variables used here, run the simulation with

data that includes

chainlLen 80
deltaT 0.004
helixPeriod 6
stepAdjustTemp 2000
stepAvg 2000
stepLimit 1000000
stepReduceTemp 4000
stepSnap 10000
tempFinal 0.001
tempInit 4.
tempReduceFac  0.97
uCon 5.

Figure 11.2 shows how the order parameter S and the negative of the potential
energy, vary with time; snapshots of initial, intermediate and final states of the
run appear in Figure 11.3. The chain behaves as might be expected; other initial
states — governed by the choice of random number seed used to set the velocities —
produce entirely different folding pathways, most of which still lead to the helical
final state (if other parameters are left unchanged); a more extensive treatment of
this problem appears in [rap02a].
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